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Abstract

Peer-to-peer (p2p) systems have driven a lot of attention in the peatielas they have become a
major source of Internet traffic. The amount of data flowing throughp®p network is huge and
hence challenging both to comprehend and to control. In this work, weadkantage of a new
and rich dataset recording p2p activity at a remarkable scale to adtirese difficult problems.
After extracting the relevant and measurable properties of the netwamk the data, we develop
two models that aim to make the link between the low-level properties of theorietauch as the
proportion of peers that do not share content (i.e., free ridetleatistribution of the files among the
peers, and its high-level properties, such as the Quality of Service diffagion of content, which
are of interest for supervision and control purposes. We obsesigm#icant agreement between the
high-level properties measured on the real data and on the synthetigaseted by our models,
which is encouraging for our models to be used in practice as largejaealietion tools. Relying
on them, we demonstrate that spending efforts to reduce the amoueeeafiders indeed helps to
improve the availability of files on the network. We observe however aatuarof this phenomenon
after 65% of free-riders.
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1 Introduction

Peer-to-peer (p2p) file sharing systems have evolved inarge Itraffic source in the
Internet [Banet al., 2011, TorrentFreak, 2010, Azzouna & Guillemin, 2008r&giannis
etal., 2004, Sen & Wang, 2004]. This development has crucigligations for traffic
engineering and information diffusion at the same timeceip2p networks constitute
a remarkable case of interaction betweeteehnologicallayer (network of computers)
where the traffic occurs, andsaciallayer (overlay network of peers, structured by related
interests) where the content spreading occurs. Moreavirnation exchanges in p2p
networks have the special characteristic that, unlike ia.gnobile phone networks, the
content that is actually shared by the peers is public ang#fzle. These features motivate
the need for the development of specific tools and modelsptuoahow these networks
behave.

In this work, we study a new dataset that records p2p actaftita particularly fine
scale, and we seize this opportunity to try enhancing bathuser experience and the
administrator’s control over the network.

The main concerns of a peer when initiating a search for arfideisually (1) to find the
desired file and (2) to acquire this file as quickly as possilie ability of a p2p system to
guarantee a certain level of performance when providingedditiefined as its Quality of
Service (QoS). While our data do not enable us to assess thityqifizthe download speed
provided by the network, which is mostly determined by theh#decture of the network,
they do enable us to evaluate the file availability. It is distriking that files sometimes
become unavailable for some time, mainly because no proisdesailable. We call such
unavailability periods Silent periods.

From the network administrator’s point of view, one of theimeoncerns is to be able
to observe and eventually control the data flow on the netwarknore specifically, the
way files diffuse on the network of peers. The diffusion offile also a feature that can be
inferred from our data and represented througjréading cascadés

Both the QoS and the spreading cascades cannot be contiwetly and they depend
on numerous characteristics of the p2p network, includimgize and its architecture, but
also on the way files are distributed on the network of pearsthe proportion of free
riders (i.e., peers that do not share content), etc. Hehieimportant to understand how
low-level properties of the network, such as file populanitger activity or their sharing
behavior are related with its high-level properties, likeesding cascades or silent periods.
Ideally, one would like to be able to influence the high-lepebperties of the network
for supervision and control purposes, and this through thaipulation of its low-level
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properties. This of course requires understanding théioakhip between these low- and
high-level properties. This paper addresses precisadyirestion.

Two models. We here propose two different models to reproduce diffehagih-level
properties of the network from its low-level properties eTiirst model, based on Markov
chains, is designed to reproduce synthetic but realistfticrdata and is particularly well
suited for reproducing convincing silent periods. The selomodel is designed to capture
diffusion features on the social network of peers and it grené well at reproducing
spreading cascades. The global procedure used to calibeste models and validate their
ability to reproduce the high-level properties can be sunized as follows:

1. identify the meaningful and measurable low-level prtipsiof the network from our
dataset and use them as model parameters;

2. run the models and extract the relevant statistics ablent periods and spreading
cascades from the simulated data,;

3. compare these statistics with the real ones, extracted thhe dataset.

The traffic model. Our first model aims at reproducing realistic syntheticficadata. It
represents the activity of peers with a Markov chain thatdiaes the dynamics of the
system, while keeping track of available files on the netw@He main idea of this model
is to assume that the network dynamics comes down to an detaegt of a number of
simple and independent renewal processes (e.g., for earhgeequest, a login and a
logout process). Each process is then assimilated to adPgisscess.

Improving upon a previous model from [@&¢al., 2003], the main features of this model
are its simplicity, its flexibility and its accuracy. Indedide intuition of the model is easily
explained and extensions of the model towards more commbkawiors can be added in
a natural way. But above all, the model is efficient for repi@idg realistic silent periods,
even for a small generated network, as evidenced by ourtse€ih the other hand, the
computational and space complexity of the procedure ate igh.

The diffusion model. Our second model is designed to describe diffusion of canten
on the network. Instead of modeling diffusion with an ageased model as previously,
this model assumes diffusion of content occurs similarlgpidemic outbursts. Indeed,
we present a model based on the classical SI model, whicmcarpiorate peer behavior
heterogeneity, and show how this model and its extensiomsapture key properties of
diffusion cascades.

In addition to the model describing file spreading dynamiesalgso present a method
to reconstruct the social network of peers — connected bynumminterest — from the
data. This reconstructed network is necessary to caliaratesimulate the model described
previously. The interplay between network and spreadinmadhyics is interesting in and of
itself and important to yield realistic results. In partenuve demonstrate the importance to
consider a dynamic network, integrating the connectiotepas in the data, to reconstruct
spreading cascade properties.

Contributions at a glance. Our two models are based both on the knowledge that we
have of p2p systems and on our dataset; our knowledge heigeniify the key features
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of the network dynamics, give structure to the system undasideration and get rid of
irrelevant details, whereas data is used to calibrate ttablkshed structure to a specific
network. As developed in the next sections, these modetsesddn reproducing some of
the high-level features of the network, such as charatitesisf silent periods and the size
and number of links of cascades.

Moreover, the models provide predictive power. For exaryipiginteresting to measure
how the fraction of free riders affects the frequency andytlerof silent periods for a
file, and therefore the availability of the file. Relying oretmodel, we observe that file
availability is improved as we reduce the fraction of fregers down to 65%, but the
gain is limited below this threshold. Although it is not pilide to directly control the
fraction of free riders, this gives us insight on the intitndynamics of p2p networks and
shows the potential use of our models for predicting theceftd new p2p policies on
diffusion or availability of files. Comparison between thetmodels also gives us insight
on the features best captured by Markov chains on the one bagdlmodels on the other
hand. As regard the diffusion model, we showed how to integ@mporal patterns into
standard epidemiology models in order to reproduce qtigktproperties of real spreading
cascades.

More broadly, we believe that the constitutive principlehind our models are in no
way limited to p2p networks, but are ultimately applicaldeother situations in networks
of interactive agents such as, e.g., in mobile phone nesvorko model the diffusion of
rumors in social networks.

Outline of the paper. The paper is organized as follows. First in Section 2, westg\the
existing studies and models of p2p traffic and diffusion. éct®n 3, we present the dataset
as well as the low-level properties of the network, used adahparameters, and its high-
level properties, used as validating metrics. Section £iichted to the traffic model that
reproduces realistic traffic data and silent periods. TiSattion 5 presents the diffusion
model, showing how it is able to reproduce key propertiepgading cascades. We finally
conclude the paper in Section 6 by discussing the resultéagmtly some foundations for
future works.

2 Related work

In the literature, several measurement-based studies lese done to investigate the
properties of real p2p traffic. In [Gummash al., 2003], Gummadi et al. crawled the
KazaA traffic for 200 days to explore the client behavior adlas rise and fall in the
file popularity over time. The studies in [Gummagtial., 2003] as well as in [Hol3feld
etal., 2004] showed that the file popularity distribution dees substantially from the Web
traffic distribution and does not follow Zipf’s law. In [Hantkandeetal., 2006], a similar
kind of measurement study has been done in eDonkey file gheystem which revealed a
strong discrimination between download traffic flow and mloavnload streams [Tutschku,
2004]. Similar studies for Gnutella [Tutschku & de Meer, 3pand BitTorrent [Izaktal.,
2004] exist as well. Measurements performed by Zhao et hh¢£t al., 2006] report a
particular and interesting behavior of the file populartiich has many similarities with
the product life cycle behavior reported in marketing hteire.
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There are several studies done on tiredeling of p2p network traffiwhich primarily
focused on the behavior of the peers in the system. In thirbiGe et al. [Getal., 2003]
proposed an agent based traffic model and used it to explerenibact of free riders on
p2p system performance; however, their model only focusegear query characteristics
and was not really data driven. In [Qiu & Srikant, 2004], Qiuaé presented a simple
fluid model for BitTorrent-like networks and studied theagtg-state network performance.
Experimental results showed that the model can captureghavior of the system even
when the arrival rate is small. Schlosser et al. [Schlossat., 2002] proposed a query-
cycle simulator concentrating on p2p traffic and networkawédrs. In [Xiangying &
de Veciana, 2004], Yang et al. modeled the service capacitydp system in two regimes.
One is the transient phase in which the system tries to cgicbuwsty demands (flash
crowd) and the second one is the steady state where theeseapacity of a p2p system
will scale with and track the offered loads. In [Menasd&hteal., 2009], Menasche et al.
proposed a framework to model p2p systems where files maynicomavailable. They
show the applicability of the model to decide the optimaldiing of files to improve the
file availability in BitTorrent. In [Fengetal., 2009], Feng et al. build user behavior models
which incorporates several important characteristichuting retry behavior, free-riding,
file checking, and file removal. The model parameters are racaply derived from real
user logs.

When we explore the aforementioned papers in the light of axgel scale measured
dataset, some limitations of the existing literature appkmaparticular, although some
works mention ways of measuring the unavailability of filesikrly to the “silent periods”
that we use, a more comprehensive understanding is recaliraat their characteristics.
Indeed, the related literature fails to provide satisfactosight regarding the connection
of the silent periods with the other network parameterscivig important considering the
close link between the silent periods and the Quality of BerWoreover, little has been
done to study in a unified way both the traffic engineering @thysical network and the
social aspects on the overlay network. Our work sheds safhedin those issues.

As for content diffusionin the literature, this concept can allude broadly to treselin-
ination of a piece of information among individuals. In thise one is typically interested
in the evolution of the number of peers which possess thegiemformation in question.
This notion of diffusion has been primarily investigatedbimlogy (in connection with
epidemic/contagion outbursts [Andersson & Britton, 200Blit has also proven relevant
in the context of p2p networks [Leibnigt al., 2006, Hosanagat al., 2010].

The interest in exploring embedded social networks upohn@ogical ones and the
increasing availability of real world data [Kleinberg, B)®ave pushed for a more detailed
notion of diffusion on networks, characterized by the sgieg of informationamong
neighborsin this network. More realistic spreading models compatibvith this notion,
which propose microscopic evolution mechanisms for th&usién phenomenon, have
been developed building upon traditional models from apidéogy [Barratetal., 2008].
These models (particularly the classical SIR model andvatvies) have been exten-
sively used in recent works to analyze information diffussa;m overlay networks, such as
emails on corporate networks [Iribarren & Moro, 2009], SMBwobile networks [Onnela
etal., 2007], hypertext on web blogs [Leskovetal., 2007], and files on p2p networks
[Bernardesetal., 2012].
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In parallel with the theoretical evolution of diffusion meld on networks, new ap-
proaches emerged in empirical studies of information spngaas well. In particular
recent works have focused on the studyspfeading cascade&lso known as diffu-
sion/information cascades) [Leskovetal., 2007, Liben-Nowell & Kleinberg, 2008, Ler-
man & Ghosh, 2010, Bernardesal., 2012]. These graphs are more complex objects than
macroscopic quantities such as number of infected indalgland reveal more information
about the spreading trail.

3 Dataset and Statistics

The data used in this study comes from a 48 hour record of thstiring activity in an
eDonkey server (akin to [Aidoumital., 2009]) located in France, suitably anonymized for
privacy protection purposes. In this setting, peers queeyserver and for each requested
file they get a list of available peers in the network possgsfi Next, the interested
peer contacts the potential providers directly and thestrassion between them ensues.
The dataset is a collection of these satisfied queries, edcasl tuples of integers in the
following format: (t, {R}k<n,C,F) where the capital letters represent unique ids. Each
tuple accounts for a request made at tinod the file F by the client pee€, satisfied by
the provider peerBk.

Trace log Spreading
example cascade

t0 1 2 F

tl1 2 3 F

t2 4 5 F

t3 2 6 F

t4 6 7 F

t4 5 7 F

t5 7 3 F

Fig. 1. Atrace log example (left) with the corresponding spreading dasceblack (right).

Each request in the latter format can be decomposed intaidhuil transfer interactions,
represented by the tuplés Py,C,F)...(t,P,,C,F). An example of the trace log given in
terms of individual interactions is presented in Fig. 1tjlef

Let # be the set of all requests} be the set of individual transfer interactions,
the set of all peers appearing in these tuples @hdhe set of all files exchanged. In
this dataset we have registerg®| = 5 380 616 peers,%#| = 1 986 588 files|Z| =
212 086 691 requests?7| = 471 134 409 transfer interactions, all happening dufing
170353 seconds. This massive amount of data offers thehildgsior a more in-depth
statistical analysis than previous studies such as [Gurnmiaal., 2003], who mostly
focused on the characterization of the p2p clients and thjec

Let us now analyze the properties of the network that can Bsored from the dataset.
We distinguish two types of properties: the low-level orfest will serve as model param-
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eters and the high-level ones that will serve as validatiegries since they represent the
properties that we want to control.

3.1 Low-level properties of the network

We now describe the properties that can be measured fronatheed and that we will use
as parameters for our models.

3.1.1 Peer activity

Let us define thectivity ap(t) of a peerP € & as the number of requests made by that
peer on[0,t]. By convention, if we writexp without the reference to the tintewe refer to
the average request frequency rather than the actual nwhbeguests, assuming it is not
changing with time.

3.1.2 File popularity

Similarly to the activity, we define thpopularity 1% (t) of a file F € # as the number
of requests for fileF made on[0,t]. Again, &= (without the reference tb) refers to the
average request frequency for fite

Fig. 2 shows the complementary cumulative distributionmspieer activity and file po-
pularity in our dataset. It can be observed that these bligions are heavy tailed, ranging
over several orders of magnitude, though not properly sta&
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Fig. 2. The peer activity and the file popularity complementary cumulatsteioutions are heavy
tailed, even though not properly scale-free.

3.1.3 Peer connection patterns

We have inferred the connection duration of peers by loo&irtheir activity profile. Fig. 3
(top) illustrates such profiles for a few selected peersivAgteriods can be assimilated
to time spent online, as opposed to the time spent offline. Y¥enate the active and



ZU064-05-FPR

netsciFinal 13 January 2014 13:35

8 R. Hollanders et al.

Request profiles for some selected clients
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Fig. 3. The request profiles of six selected clients (top) and files (botteitt) variable
activity/popularity. Here, each time line corresponds to a peer or a filenendraw a blue dot at
time t on the time line of some peer or some file if it has been requested at that(Tiopg. We
also add green circle and red crosses for the estimated login and logestdfrpeers respectively.
(Bottom) One can clearly distinguish silent periods on most of the illustratefdes.

inactive time periods using a maximum likelihood approaakda on an algorithm from
[Jewell, 1982]. Roughly, the idea is to decide whether aarirgl between two requests
corresponds to a period during which the peer was onlinetoifihe procedure is explained
in more details in Appendix A. On Fig. 3 (top), the estimategih and logout dates appear
respectively as green circles and red crosses. From tmeatst active periods we extract
the distributions for the rate at which peers login to themoek when they were offline
and the rate at which they logout when they were online, whietluse in our models.

Fig. 4 shows the complementary cumulative distributionstiie estimated peer login
and logout rates. As for the peer activity and the file popiylaistributions, these distri-
butions are also heavy tailed.

3.1.4 Sharing behavior

It has been observed that the peers are divided into twoeda#isose that provide file
sharing facility gharing peeror providerg and those that do nofrée riderg [Ge etal.,
2003]. Free riders bring in capacity only to the common sergomponent of the system
(e.g., routing queries), and do not contribute to the capatserving files. More precisely,
we define a sharing peer as a peer that shares at least onefiddgHanown to be in its
possession to other peers. A peer who is not a sharing pedres gder. In our dataset,
the proportion of sharing peers was around 4%.
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Fig. 4. The peer login and logout rate complementary cumulative distrifsutice also heavy tailed.

3.2 High-level properties of the network

We now describe silent periods and spreading cascades \ahécthe properties of the
network that we would like to study. They will serve as vatidg metrics for our models.

3.2.1 Silent periods

One critical feature of p2p requests is the fact that a fil®tsaiways available; availability
of the file depends on the presence of providers for that fde ekample, when a popular
file is not available for some time, one can observeiteht period when looking to its
request profile, i.e., a sudden stop of the requests for tedbfiowed by an unexpectedly
long period of inactivity. Fig. 3 (bottom) illustrates thequest profiles of a few typical
files on which one can neatly observe some silent periods.pfésence of long silent
periods is undesirable in practice because they are ftingjri@r the peers interested in the
unavailable files. Additionally, silent periods indicatéemporary stop in the traffic flow
in the underlying network for that specific file (these isshage already been mentioned
in [Menascheetal., 2009]).

To identify silent periods, we used a similar procedure &dhe used to determine
the connection patterns of the peers. The idea is again tdeleasing the maximum
likelihood approach proposed in [Jewell, 1982], whetheraira time-interval between two
requests of a file corresponds to a period during which thenle available. Again, the
procedure is described with more details in Appendix A. Gthessilent periods have been
identified, we computed three of their characteristics, elgin(il) the distribution of the
number of silent periods in request profiles, (2) the distidn of the total unavailability
time of files and (3) the distribution of the average lengtlsitént periods. Although all
the aforementioned distributions are based on the silamgerofiles, they nevertheless
complement one another and reveal different trends.

3.2.2 Spreading cascades

We also analyze thepreading cascadavhich represents the diffusion of each file in the
p2p network. For a fil&, the spreading cascade is a directed graph featuring th#sef



ZU064-05-FPR

netsciFinal 13 January 2014 13:35

10 R. Hollanders et al.

peers who have participated in the spreaé ¢as clients and/or providers) and the $6t

of links connecting each clie@with the first peer(s) who providdel to it. More formally,
let 7 (C) = inf{t : (t,-,C,F) € 2} be the first instant at whic@ requestedr and let the
directed graph#s = (2, %) be the spreading cascadefgfwith

@F:{PGQ:(-,R-,F)E@Of(-,-,RF)G@}7

% =Ucer {(PC) € Zr x Z¢ : (e (C),P,.C,F) € Z}.

A client requesting a file may receive a response from paiptseveral providers
simultaneously, which implies that nodes in the cascadphgret only have multiple
outgoing links, but also multiple incoming links in general

The first key property encoded in the spreading cascade aka §le F is the number
of nodes who possess it at the end of the observed periodhvghiiven by thesizeof the
cascadéeZ|. We also explore two other key topological properties ofdhgcade, namely
its depthandnumber of linksThe former is defined as the length of the longest path on
the cascade and captures the maximum number of hops fromcpeeer that the file has
undergone before it was relayed from a provider to a clieneé Aumber of links, given by
|-Zx|, combined with the size of the cascade gives informationhensharing pattern of
the network. An example of observed trace and constructezhdmg cascade is given in
Fig. 1: the spreading cascade has size 7, depth 3 and 6 links.

4 A Traffic Model Based on Markov Chains

Our goal in this section is to propose a simple traffic modat ttan reproduce the basic
characteristics of the real p2p traffic. Instead of propgsincomplete and rigid model
which is perhaps hard to customize, we aim at developing @letmintuition-driven
flexible model which is easily extendable depending on trexi§ip requirement. With
some directions to the possible extensions, we show how odehis able to reproduce
the key features of the silent periods that can be observeshirdata.

The model that we propose relies on the assumption thattglimake new requests
independently of previous ones and that the time betweenréguoests follows an ex-
ponential distribution. In general the Poisson procesamater may be time-dependent,
for instance varying according to the circadian rhythm agmgewhich has been observed
empirically [Locheret al., 2009]. In the following, we neglect the time-dependeas a
first approximation. Thus, the requests of a cliéntollow a Poisson process with the
activity ap as parameter (i.e. request rate). According to our dats,isha reasonable
assumption, as illustrated in Fig. 5. In this figure, we coragahe average inter-request
times with its standard deviation: the agreement of the twwes is indeed a property of
exponential distributions. In a similar way, we assume thattime between a login and a
logout (or vice versa) follows an exponential distributi®uch assumptions are frequently

1 Our model features only 5 parameters, assuming that file popularéyapévity, login and logout
rates can be characterized by power law distributions.
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used in the literature [Menascheal., 2009, Clevenot & Nain, 2004, Gummaal., 2003].
The intermittent availability of files seems to be an impottf@ature when studying their
diffusion in p2p networks. Our model takes that into accasinuch as possible.
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Fig. 5. (Blue) The average inter-request time for a typical active clie(T) = 2674) and (Red)
its standard deviation, evolving with time. Both the average and the standaiatidn have been
estimated with a one-hour sliding time window over the two days’ time rangeodata. The two
curves are close from each other, in agreement with the assumptioimtéragvent times follow
an exponential distribution. The fact that the red curve lies a little bit abavéltre curve reveals
however some burstiness. Furthermore, note that the parameterRdig®n distribution depends
on time through the circadian effect, which we choose to neglect as agijpsbximation.

Model parameters.To simulate a p2p system with clients anch files, we need to fix the
following parameters:

1. The activity of the clients;
2. The popularity of the files;
3. The login and logout rates of the peers;
4. The fraction of free riders.

These ingredients can be obtained from our data throughiskrébdtions of peer activ-
ity, file popularity, login rates and logout rates, and theexed proportion of free riders.
See Section 3.1 for details about these statistics. We thernthese statistics to generate
a set of peerg” and a set of files# of appropriate size. To each pd@rwe assign an
activity ap according to the observed activity distribution as well degin rateAn,, a
logout rateAoyT, and a sharing peer/free rider flag. We also assign a popufasifi.e. the
rate at which fileF is requested) to every filé according to the popularity distribution.
Finally, we choose the number of time stép$o be simulated.

The core of the model can be split in two parts: (1) the stateawh peers in the
system, represented by small Markov chains and (2) the stdle files, represented by
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an availability matrix. This matrix is meant to make the limkween the states of all peers
by remembering which files are possessed by which peers.

4.1 The behavior of the peersrepresented by Markov chains

The state of a pedpP in the system is represented by a continuous-time Markoincha
(see Fig. 6) with three states: an offline state (“@HFan online state (“ON") and a
download state (“Dk"). The transition rates between the states are chosendingao
the chosen activityAreq, = ap), login rate Qn,) and logout rateXou,) of peerP (which
are initially attributed as described above). In this sinplodel, we assume that files are
downloaded instantaneously, hence the downloadiite = .

AONs AREG

@

Fig. 6. A three-state continuous-time Markov chain provides a naturdéhas a peer’s dynamics.

Of course, the initial state of each peer should be inigaliat time = 0 to either “ON”
or “OFF", proportionaly to Aon,” and “Aorr,” respectively.

The main strength of such a simple modeling of the peersiregsmodularity. Indeed,
it lays the foundations from which almost any feature thay megpresent the behavior of
a peer can be added in a fairly straightforward way. We wilhtioen a number of natural
possible extensions of these Markov chains in Section 4.4.

4.2 The availability matrix

The presence of silent periods in the p2p system highly dipen the availability of
the files. For a file to be available, it must be possessed byawlkich is both online
and ready to share the file. To capture this feature, we inttedhe availability matrix
A(t) € {0,£1}™"whose entries are defined as follows:

if peerP does not possess file at timet
1 if peerP possesses filE at timet
Apf(t) = and is both online and ready to sh&re
—1 if peerP possesses filE at timet
but is either offline or not ready to shafe

We also define the availability vectaft) as:
ar(t)2 T max{Apg(t),0}
Pez
for all filesF € .7, which counts the number of available providersFoat timet, and its
binary versiora™" (t) £ min{ag (t), 1} for all F € .%. Hence, a filéF is available at time

t wheneverg (t) > 0 (ora®" (t) = 1).
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Then, when simulating a p2p system using the Markov chaifisatkin Section 4.1 to
represent the state of the peers, we updéteas follows:

e When an event “ON — DLp” occurs at timet, peerP chooses a filé& according
to its preference vectqs®(t) (which is a probability vector that depends tosince
it depends on the files that are available at the time of theast). In the simplest
version of our model, we choog# (t) to be proportional to the popularity of the
available files (and independent from the number of avalabbviders) such that:

by TEACT(L)
Pr (t) - (bin)
YFez TR o (t)
for all P. Once a file= has been chosen to be requested, we upidje

Por (1) = 1 if peerPis a sharing peer
PR —1 otherwise.

e When an event “ON — OFFR" occurs at timet, and if peerP is a sharing peer:
Apr(t) = —|App(t—1)|, forallF € .Z.

e When an event “ORF— ONp” occurs at timet, and if peerP is a sharing peer:
Apr(t) =|App(t—1)|, forallF € #.

To summarize, the availability matrix keeps track of howdfilliffuse among the peers
while providing information about the availability of théef for other potential clients at
the same time. Of course, it is necessary for the mattixbe initialized at timeé = 0 such
that there is at least one non-zero entry in every column.a8sgnment of the non-zero
entries for each line of the matrix is therefore randomlysghoin proportion to the activity
of the corresponding peer.

Modeling procedure. Once all peers and files in the system have been created with th
parametersr for files andAreq,,Aone,AoFr and the sharing peer/free rider flag for
peers), and once the availability maté0) and the initial states of the peers have been
initialized, one can simulate the traffic generation prec®¢e first simulate for every peer
the moment of its next transition in the Markov chain. Thewr, iteratively treat every
transition event in the Markov chains of the peers in theiteorof appearance. After the
treatment of the transition event of a peer, we first detegrttie time of its next transition
before considering the next event to happen. We do this th#iltime limit has been
reached.

We can determine the complexity of the modeling processhwbssentially corresponds
to the product of the expected number of events to treat Witcost of the treatment for
one event, which gives a number of flops of about T R wheremis the number of peers,
nis the number of filesT is the total time to be simulated afds the average number of
requests of a client per unit of time. In our datasgis typically worth about 2.5 requests
every day, hence in our ca3eR~ 5.

4.3 Model validation and insights

We simulated the above described model to generate a sintlaaset with 5000 peers
and 2000 files over a period of time of 2 days. Here, the rativden the number of peers
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and the number of files is approximately the same as in the Baga? illustrates request
profiles for some clients and files obtained from our simalai

Request profiles for some selected clients

92+ i
76 ——
al)= 74
31
15 3¢
0 time T

b 3

Request profiles for some selected files
120
84
82 -
51
43
18
0

time T

Fig. 7. Request profiles obtained from simulations for a few selected ped files. They can be
qualitatively compared with the real profiles shown earlier in Fig. 3.

To compare both the real and the synthetic datasets, we lus@dgtrics that we defined
in Section 3 for silent periods, i.e., the distributionstod humber of silent periods as well
as their total and average length. These three metrics anplementary to each other
and they reveal different trends. Fig. 8 illustrates theltewbtained on these metrics for
both datasets. We observe a remarkable correspondencedmesimulated and real data,
especially for the first two distributions, which is a noivitl and encouraging result.
Furthermore, it is striking to see that this correspondeésabserved on datasets with a
huge difference of scale. This is a good sign that our modable to reproduce some
essential intrinsic features of a network even at a fairlpléstale, which is an interesting
achievement, especially given the simplicity of the model.

Next we turn our attention to understand the impact of frelerd on the QoS and
user satisfaction. Taking advantage of the above describmdts, we used our model
to simulate traffic with an increasing proportion of freeerigl. We recorded the average
number of silent periods and the average total length ofsijeriods and plotted the
results in Fig. 9. As expected, the number of silent periodktheir total length decrease
when the proportion of free riders decreases. Even thougfralstion of free riders is not
an exogenous parameter that can usually be controlled,intésesting to note that the
characteristics of silent periods—thus the availabilitfiles—seem to stabilize when this
fraction falls below 65%. Hence, reducing the number of fiders seems to be a way to
improve the QoS, yet only until some point, whereas otherotdfthat are more difficult to
deal with also affect the QoS, e.g., the disconnection ofélepeers that possess a rare
file. In that respect, the contribution of a file on the QoS $thquobably be defined as
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Fig. 8. The scaledisimulated data exhibit a remarkable correspondence with the real dale on
three chosen metrics that feature silent periods, especially for theamnwhsilent periods (left) and
their total length (middle). The mismatch for the average length of silerage(right) reveals that,
for a given file, the lengths of its different silent periods have not ghariation in the simulated
data. There is also a minor mismatch for the distribution of the number ot gitgiods (left) that
shows a higher tail in the real data than in the simulated data. This higherdbdlgy comes from
a bias in the way we identify periods at all for which we detect (lots of stsilknt periods. As
supported by both the graph for the number of silent periods and thioteir average length, this
effect is more likely to appear in the real data for which inter-event timesere variable.
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Fig. 9. The average number of silent periods (blue) and their avéotgldength (green) increase
when the proportion of free riders increases. Below around 65%eef fiders, both the average
number and the average length seem to stabilize. Note that the curvesebdledefined at 100% of
free-riders, as no sharing occurs at all in this case.

the total time of its silent periods weighted by its populasince the unavailability of an
unpopular file should not be too much of a problem.

The model in its present simplest form creates a completesdathat is similar to the
real dataset we study. Hence, diffusion cascades can ectedrand their characteristics

2 The simulated networks were obtained with fewer files and peers ané hifica smaller request
density than the original network. Therefore, the time line in the simulatedvdadascaled by a
factor that best highlights the comparison between original and simulatadThe same scaling
was used in the three graphs, also affecting the computation of the silimdgeBecause of this
scaling, the comparison between original and simulated data should rquaitative and focus
on the shape of the curves.
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can be studied (see Section 3). However, the obtained caseae quite different from real

cascades. In particular, their depth is in general sigmifigesmaller. To obtain realistic

cascades, one should improve the model, for instance bp@ddimmunity effects to it as

we mention in Section 4.4. We expect the model with commesiid be able to reproduce
realistic cascades and we plan to test its ability to do soitré work. However, even if

it does reproduce realistic cascades, it will neverthalesgin a costly method if the only
feature one is interested in is the diffusion of files. Therefin that case, a model which
is specialized for diffusion should definitely be preferrdoposing such a model is the
goal of Section 5.

4.4 Natural extensions of the core model

The model presented above is meant to be as simple as posdilike capturing the main
features of diffusion and silent periods in p2p networkserethough simplicity is one of
its main strengths, the model remains highly modular andabfe in many natural ways.
To illustrate that, we here mention a number of natural esiters that may be of interest
while generating the synthetic p2p traffic. On the one hameké extensions increase the
complexity of the model, but on the other hand, the latter @antually become more
sophisticated and realistic.

e Add community effectshis can be done by modifying the definition of the prefer-
ence vectop® of the peers such that they only are interested in some opief
files. Such a modification can be done without modifying thigsilly chosen activity
and popularity distributions. Note that community effetay play a crucial role in
the way files are diffused in the network.

e Add a circadian effect or other time-dependent effdtts always possible to add a
time dependency to the parameters of the model. For instargreadian effect can
be taken into account by modulating the request rate of teesg®y a constant that
oscillates around 1, depending on the time of the day. Natetiime effects can be
used to take burstiness into account.

e Add a sharing obligation for free riders to share the filesheit possession while
downloading a filewhile spending time in the “D” state, the clienf is forced
to share its files (which can be imposed by adding the new epude: Apg (t) =
|Apr (t —1)|, for all F € # whenever entering that state). For that, a finite download
rate ApL, can be chosen so that a non-zero time is spent in that stateiabpare
must be taken however to take into account the fact that ogugrests can be made
while spending time in the “Dg” state: this can be settled by extending the Markov
chains from Section 4.1 into a download queue.

¢ Include correlation between the parametédfgorrelation data is available, it can be
used to assign activities, login rates, logout rates andrghpeer/free rider flags to
the peers in a more realistic way.

e Include the fact that peers may clear their sharing diregtdhis can be done by
adding new “clearing” states to the original Markov chaimsl &y adding a new
update case for the availability matrix which erases altiestrelated to a peer that
visits the new state. Adding such a clearing state can maedikappear from the
network after some time or prevent some files from acquirimgmhany providers.
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e Add a dependency between the popularity of a file and the nuofilpeoviders for
this file this can be obtained again by modifying the definition of pineference
vectorp® of the peers, making it dependentift) and not only in its binary version.

The above extensions illustrate the flexibility of our modigk likely that most refinements
that one could be willing to add to the model could be addedairly straightforward way.

4.5 A brief comparison with an existing model

We here compare our model with the existing agent based nuederibed in [Geet al.,
2003]. The differences that one can expect from our modetharéollowing:

e Our model aims to be as simple and natural as possible, whemdodel from [Ge
etal., 2003] introduces some sophistications like for instathe classification of
peers into several classes that behave all differentlyh@tstame time, our model
leaves room for extensions that can be added in a straigfgfdrway.

e Our model generates synthetic datasets that exhibit giknds even for the popu-
lar files, which we often observe in real traces, whereassdtgtayenerated from the
model described in [Getal., 2003] only generates such silent periods for unpopular
or moderately popular files.

¢ Finally, our model can be implemented in order to perform potations in parallel
by treating several transition events close in time at tiheeséme.

5 Social Network and Diffusion Modeling

In this section, we examine the observed file spreading dasoan the social network of
peers participating in the p2p system. To this end, we mdespreading cascade of files
using a standard contagion model adapted to networks: tleerg@agion model [Barrat
etal., 2008]. As discussed in the introduction, this is a kégnence model in the study of
diffusion in a wide range of fields. This model treats eachsfleeading as an independent
epidemic on the underlying social network of peers, wheerpmfect their neighbors in
the network according to local rules of transmission.

Given this setting, in order to analyze the empirical spreffiles among peers we
need not only the detailed chronological data of who trattechthe information to whom
(observable in the trace) but also data on the underlyingaksaetwork on which the
diffusion takes place. As pointed out in [Gomez-Rodrigaeal., 2012] it is challenging
to reconstruct the network on which the diffusion takes @la@ne strategy to unfold this
network is to explore relations among peers and their conshared files. Such a strategy
was hinted at in [Handurukandgal., 2006] and developed more substantially in [Latapy
et al., 2008, lamnitchiet al., 2011, Bernardest al., 2012]. We follow this approach to
reconstruct the underlying social network and we build uffos model, integrating the
temporal information in our trace to reconstruct a dynaraaia network of peers. Finally,
we calibrate the diffusion model using available trace daiz evaluate it using numerical
simulations.
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5.1 Social network reconstruction

It is reasonable to assume that peers store and share corltgat to their interests and,
likewise, peers will search for content matching their iegts. In this sense it is natural
to study the diffusion of files in the network of peers, retellyy common interests. More
precisely, let thénterest graptbe the graph in which each node represents a peer and each
edge joining two peers stand for common interest. Henceptead of files among peers
takes place on the interest graph and occurs from neighbw@igibor, in agreement with
the notion of diffusion on networks. It is important to sgéisat one cannot directly observe
this graph in general — especially at large scale — but it $side to approximate it using
the spreading trace presented in sectitiriing the framework in [Bernardesal., 2012]
we construct the bipartite grapl = (£,.%, ) whered/ is the set of edges connecting
the disjoint sets? and.#, respectively of peers and files, connecting each peer til¢ise

it has shared, that is:

o ={(PF)e ZxF:(\P-F)egor(, PF)e 7}

Next, we construct the inferred interest graph of peerspeoting any two peers, which
have demonstrated a common interest in the trace log — byeséigg or providing a
common file. More precisely, the interest gragh= (£,&), is given by the projection
of # on & such that

E={(PP)eP?x P .FF € Z,(PF)c o and(P,F) € o/}.

In other words, peers belonging to the neighborhood of a comfite in % are con-
nected in¢ — cf. example in Fig. 10. If a pe® provides a fil&= (corresponding to a music
album for example) to another pe# then there is link between them in the interest graph
since both are interested in the same content, nafely

files

A B C D
m/\

O o~ 3 &
1 2 3 4 5 6

peers inferred interest graph

Fig. 10. The interest graph is the projection of the bipartite graph of peerfiles, on the set of
peers.

The interest graph is a comprehensive synthesis of pedesest relations revealed in

the observed time window. These relations are key to difussince the spread of files
occurs on the interest graph, as pointed out previously. édew even if the spread of

2 In this section we use a reduced portion of the dataset, consisting of tHghfissof measure.
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files between neighbors in the interest graph is likely, tttea transfer of files may not
occur concretely because they may never be simultaneooshected to the p2p system
or have a smalto-presence time i.e., the amount of time online in the presence of each
other in the system. Hence, in order to make simulations memabstic, in the sense of
reproducing observed file spreading cascades, we used t@nipformation to enhance
the social network reconstruction.

A strategy to use temporal information, integrating theremtion data estimated in
Section 3.1.3, is to reconstructdgnamic interest graphn this graph, two peers will be
connected at time> 0 if they share a common interest (as in the interest graphif éimey
are both online at time More formally, letZ; be the set of nodes online at time 0 and
let the dynamic interest graph be defineddas- (44, &), with

&={(PP)e P x P IF e Z,(PF)ec o and(P,F) e o}.

Intuitively, the dynamic interest graph is built similatlythe original interest graph, but
evolves with the addition/suppression of links betweenneating/disconnecting nodes
and their neighbors. The dynamic interest graph is a subgolghe interest grapty =
(£,8&) defined previously, in the sense that fortalk 0, & C & andé& C &. In the
following, we examine both the original (static) interesfph and the dynamic interest
graph as the underlying social network on which we performdpreading simulations.
That is, we consider a simple, baseline setting in which wgpese all the users are
continuously online during the whole observation period arsecond setting where we
integrate peers connection patterns. Let us refer to thetsiegs asstatic and dynamic
respectively.

5.2 Diffusion model and calibration

As pointed out in the introduction, we model the spreadinfile$ using the SI model for
networks [Barraetal., 2008]. In this model, each individual is eitlsisceptibl@r infected
(hence the acronym). Susceptible nodes do not possessthadilmay receive it from an
infected node, thus becoming infected. Infected nodesirim try to spread the file to each
of their neighbors in the network, one at a time in a unifornd@mn way. The time between
two infections is also random and follows an exponentiatritistion, which we refer to
as theinter-contagion time (ICT)Thus, ifP possesses the file, the number of peers who
received the fild&= from P (after P obtained it) is a Poisson process characterized by the
inter-contagion time rate. Alternatively, this procesa && characterized by the average
ICT, since it is the inverse of the ICT rate. We will examinen®dels withhomogeneous
and heterogeneoumter-contagion time. In other words, in the first case wepsise all
nodes have the same spreading behavior (global ICT ratdpahd second, an individual
one (a different ICT rate for each node).

In order to calibrate these models, we use the temporal dataritrace: the estimation
process takes into account the number of files provided Hymade and how long the node
was online. Therefore, it yields different estimates far #verage inter-contagion time in
the static and dynamic settings — i.e., if we suppose nodes eentinuously online the
whole period or not. Considering the homogeneous SI mods| fire estimate average
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inter-contagion times of 10 064 seconds (2h48min) in thiécs$atting and 4 926 seconds
(1h22min) in the dynamic setting.

Next, considering the heterogeneous SI model, we also hiffezetit average inter-
contagion time estimates for different settings: sinyldd the homogeneous model, indi-
vidual estimates are also generally greater in the statingelndeed, nodes seem less ac-
tive if we suppose they were continuously online in the winddservation period (since the
number of transfers remains the same). An important difiegen this model, compared
to the homogeneous one is the following: individual averaggr-contagion times imply
that observed free riders (clients who do not provide files)ehnull ICT rate estimates.
Hence they will also behave as free riders in simulationshif inodel. The estimated
complementary cumulative distributions in both settingtatfc and dynamic) are plotted
in Fig. 11. As noted in section 3, more than 95% of the peerkdrsystem are free riders,
and thus, are not represented in the graph.
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Fig. 11. Complementary cumulative distributions of individual averagericontagion time
estimates for nodes in the static and dynamic interest graphs. Free(rid8&6) have null inter-
contagion time rate and are not shown.

5.3 Results

We have simulated the SI model with homogeneous and hetezogs spreading behavior
as outlined above on the static and dynamic interest gramhsdch file present in the
trace. The profiles of real and simulated cascades are supetian Fig. 12: we have
plotted the complementary cumulative distributions ofceafes’ size, number of links
and depth. For each cascade property, we plot the samebdtgiri in lin-log and log-
log (inset) scales, which highlight respectively smadikofrt cascades (most cascades) and
bigger/deeper cascades (rare cascades).

The first observation, comparing simulated cascade prdfitebe static interest graph
and the dynamic interest graph, is that cascades are gigramealller and feature a smaller
number of links in the dynamic graph. This is due, in parthe fact that in the dynamic
graph, in contrast to the static interest graph, there afmk® between nodes which were
never simultaneously online in the trace. In our case, th@ssing links amount to 29%
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Fig. 12. Spreading cascades profile in terms of size, number of lindsdepth, respectively.
Plots feature the complementary cumulative distribution of these propeértleslog and log-log
(inset) scales. Simulations on the dynamic graph remain closer to remdess(trace), with the
homogeneous model reproducing well real cascades’ size an@thmfeneous one, their number
of links; no model was able to reproduce the observed depth distribution.
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of the links in the static interest graph. So, in order to eat# their impact, we have also
simulated our models on the static interest graph withageHinks (not shown) and found
that the impact was minor: simulated cascades in this netie¢ gfiaaph featured the same
profile of simulated cascades on the original static integesgph. Thus, we conclude that
the difference in cascade profiles simulated on static andmyc graphs is primarily due
to the reduction of the co-presence time among neighborserdynamic graph (in the
static interest graph the co-presence time corresponctwiiiole observation period) and
potential causality effects. This cascade profile diffeeeis not trivial however since one
could have thought that the co-presence time reductiorddoaNe been compensated (or
overcompensated) by the fact that nodes in the dynamic gmapore active than nodes
in the static graph, as discussed previously.

Focusing on the cascade properties, we note that none ofrtipwsed models was
able to reproduce the scale-free depth distribution featby the real cascades; simulated
cascades exhibit, in contrast to real ones, a sharp dedredise proportion of cascades
with depth greater than 10. In terms of size and number oflimke find encouraging
results: both homogeneous and heterogeneous modelsmedtatively well in the dy-
namic setting, in the sense that simulations on the dynarajshgfeature a proportion of
small cascades similar to the real ones (most cascadesyntis bf larger (and infrequent)
cascades, the homogeneous model reproduces well the sfgbudion of real cascades;
in terms of number of links, the heterogeneous model is super

6 Conclusion and Perspectives

During the last decade, substantial research has beenmitireefield of p2p systems. Most
of the studies focused primarily on measurements or on ¢fieal modeling. In this work,
we took benefit of a new rich dataset obtained by measuringp®yty to bridge this gap,
proposing a data-driven approach to model two importarg@sgsurrounding p2p sharing.

Our measurement study of an eDonkey network has revealddvialproperties such
as heterogeneous distributions of file popularity and pegvity, Poissonian query and
download profiles, high presence of free riders, etc. Theystdisilent periods revealed that
unavailable files are frequent, even for popular files angtbéles of diffusion cascades
revealed elongated cascades, with a scale-free deptldikin.

The insights obtained from the dataset enabled us to prapasdfic model based on
Markov chains and Poisson processes. The model is able &vajersynthetic traffic data
that reproduce several key properties of the p2p netwoidh sis for instance the silent
periods — that matter for the Quality of Service — which aneviecingly reproduced. The
model is simple but nevertheless easily extendable to alsmduce the other character-
istics of the p2p network. Further exploration of the modss hevealed that the presence
of free riders above 65% significantly deteriorates the @ualf Service, whereas the
network mostly remains unaffected before this fraction.

In the study of diffusion in p2p systems, epidemic modelshzeen used in the literature
to reproduce the evolution of the number of infected indreis [Leibnitzet al., 2006,
Hosanagaetal., 2010]. In this work we have explored a rich empiricaliootf diffusion
in the context of p2p systems — namely, file spreading cascagéich not only contains
the information on the number of infected individuals, asalsbut also encodes the file
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diffusion trail. To study those objects and assess theaalt= of epidemic/contagion net-
work models which generate diffusion cascades, we havastumted the social network
of peers in the p2p system using the available temporal datzeitrace and integrated it
into the spreading model.

Spreading cascades feature a complex structure, which nveatize in terms of three
key properties: size, number of links and depth. Previoudiss pointed out that these
properties are challenging to reproduce with simple spngachodels [Bernardest al.,
2012]. Our results are coherent with these findings, in tmses¢hat the SI models we
examined were unable to reproduce all these key propertragtaneously. In particular,
the depth distribution of real observed cascades is qtiadita very different from cor-
responding distribution of the simulated cascades. Thd{ sar work demonstrates the
benefit of incorporating available temporal data into thaleis to make simulations more
realistic. In particular, we present a framework capableepfoducing the distribution of
cascades size or number of links using a reconstructed dgrsacial network of peers. We
have also shown that assuming homogeneous or heterogesmeading behavior impacts
the cascade profiles, albeit to a lesser extent than theetiffe between simulations on the
static or dynamic interest graphs.

Although we have explored improvements to epidemic moaetlsis work, they remain
based on “push” dynamics whereas peers in p2p systems ‘tmitent from one another.
Thus, we plan to analyze adoption/threshold models in therdy for their spreading
dynamic might be more adapted to this context than standftsidn models currently
used.
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A How to detect offline and silent periods

Let {to,t1,...,tn} denote event dates and t=t; —t;_1 for 0 < i < n be the inter-event
times. Here, we think of thg’s as the download dates from some given peer or for some
given file. We assume that if the peer is connected (resp. lnésfavailable) the time
between two downloads follows an exponential distributidth parameter. Similarly,

if the peer goes offline (resp. the file becomes unavailabieassume that the time before
the next event also follows an exponential distributionhwparametei3. Clearly, a is
larger thanB. Furthermore, eact; either follows one or the other distribution. Our goal
is, for eachd;, to be able to link it to the most likely distribution in ordter detect offline
and silent periods in real event sequences.

Given that two distinct exponential distributions alteéeeandomly, the algorithm from
[Jewell, 1982], Section 4, tells us how to find the most likerametersr and 3 of the
two distributions. Then, the next step is to link evekywith the right distribution. Let
X ~ Expo(a), Y ~ Expo(3) and let a given inter-event timé be equal taD. We can
compute the following probabilities:

P(X >D)=¢e P
P(Y <D)=1-¢e*P,

Hence, it means that it is most likely thait~ Expo(a) iff € 9P > 1 —e AP, This enables
us to conclude.

Of course, in practice, some implementation details musaken care of. For instance,
if o andp are close to each other, it probably means that the peer weveoffline or that
the file was always available. Additionally, border effectay appear and must be treated
appropriately.
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