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Abstract Many works have studied the Internet topol-

ogy, but few have investigated the question of how it

evolves over time. This paper focuses on the Internet

routing IP-level topology and proposes a first step to-
wards realistic modeling of its dynamics. We study pe-

riodic measurements of routing trees from a single mon-

itor to a fixed destination set and identify invariant
properties of its dynamics. Based on those observations,

we then propose a model for the underlying mecha-

nisms of the topology dynamics. Our model remains
simple as it only incorporates load-balancing phenom-

ena and routing changes. By extensive simulations, we

show that, despite its simplicity, this model effectively

captures the observed behaviors, thus providing key in-
sights on relevant mechanisms governing the Internet

routing dynamics. Besides, by confronting simulations

over different kinds of topology, we also provide insights
on which structural properties play a key role to explain

the properties of the observed dynamics, which there-

fore strengthens the relevance of our model.

1 Introduction

Studying the structure of the Internet topology is an

important and difficult question. No official map be-
ing available, researchers have to conduct costly mea-

surement campaigns, and deal with the fact that the

obtained data can be biased [19,1]. Studying the dy-
namics of this topology is therefore an equally hard, if

not harder, problem.

Instead of trying to obtain a complete view of the
Internet topology dynamics, it is possible to use an or-

thogonal approach to obtain insight on the dynamics
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of the routing topology observed at the ip-level [20].

In this paper, we follow this approach and study ego-

centered views of this topology. Given a monitor and a

fixed set of destinations, one such view is obtained by
measuring the routes from a monitor to a set of desti-

nations. This can be performed quickly and with low

network load with the tracetree tool [20]. Repeating
this measurement periodically therefore allows to study

the dynamics of this view.

Previous work has shown that ego-centered views

exhibit strong dynamics, and in particular that the set

of observed nodes evolves much more quickly than what
was previously expected [23]. Here, we analyze in depth

this dynamics (Section 2), and find that two factors play

a key role in the observed dynamics: load-balancing
routers, and the evolution of the routing topology (Sec-

tion 3).

Based on these observations, we propose (Section 4)

a baseline model for the routing dynamics in the Inter-

net that incorporates routing modifications and load
balancing, using simple choices for modeling these fac-

tors. We perform an in-depth study of the model behav-

ior (Section 5) and study the impact of the underlying
topology structure by comparing the results obtained

for random graphs and graphs with a power-law degree

distribution. Finally, we show that this model is able
to accurately reproduce the behaviors observed in real

data. Our results show that simple mechanisms such

as the ones we take into account play a key role in the

Internet routing topology dynamics, giving a strong ex-
planatory value to our model. As such, it represents a

significant first step towards the modeling of the Inter-

net ip-level topology and its dynamics.
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2 Dynamics analysis

The tracetree tool [20] collects the ego-centered view

from a given monitor to a given set of destinations by

measuring the routes from this monitor to each des-
tination. This corresponds to a subset of the routing

topology, in which nodes are the ip-addresses of routers,

and a link exists between two nodes if the correspond-
ing routers are connected at the ip level. Note that the

routing topology is different from the physical topol-

ogy, as two routers may be physically connected by a
link that is not used for routing. Note also that we only

observe a subset of the whole routing topology, as mea-

suring the routes from a single monitor to a limited set

of destinations certainly does not allow to discover all
nodes and links in this topology. Moreover, this subset

is not representative of the whole topology, see for in-

stance [19,1]. Keeping this in mind, we will see that we
are still able to make interesting observations about the

dynamics of this topology.

Running the tracetree tool periodically allows to
capture the dynamics of ego-centered views. We col-

lected two datasets in this way. The first one, woolthorpe,

was collected from a monitor in University Pierre and
Marie Curie in Paris towards a set of 3, 000 destinations.

The collection frequency is of one measurement round

every 15 minutes approximately. It started in Septem-

ber, 2011 and lasted approximately a year with some
small interruptions due to power shortage. This repre-

sents a total of 32,018 rounds. The second one, ovh,

was collected from a French server hosting company.
Only 500 destinations were used in order to increase

the measurement frequency, which is of one round ev-

ery one and a half minute approximately. It started in
October, 2010 and ended in September, 2011, which

represents a total of 318, 000 rounds. In both cases, the

destinations were chosen by sampling random ip ad-

dresses that answered to a ping at the time of the list
creation 1. These datasets are publicly available [30].

It is possible that, at a given time, several routes

to a same destination co-exist, in particular because
of load balancing. Therefore, two consecutive measure-

ment rounds may capture different routes to a same

destination even if no routing change has occurred. We
study this in the next section, and present below the

main characteristics of the observed dynamics. Notice

that previously measured datasets are available, for dif-
ferent durations, at different times since 2008 [30]. We

performed our analysis on a representative set of these

datasets, and made similar observations to the ones we

1 Previous work has indeed shown that tracing routes to
unused ip addresses can introduce measurement artifacts [37].

present here. This shows the generality of our observa-

tions.

Discovery of new ip addresses. A previous study of the

same type of data has shown that these measurements

continuously discover new ip addresses that had never
been observed before, at a significant rate [23]. These

observations were made on two-months-long measure-

ments. Fig. 1(a) shows that it is also true for very long
measurements. It presents the number of ip addresses

observed since the beginning of the measurement, for

both datasets. A dot (x, y) in this figure means that y
different addresses have been observed at least once be-

fore time x 2. We see that, after an initial fast growth,

the plot increases significantly for extended periods of

time.

This plot presents the number of distinct ip ad-
dresses observed, and not the number of distinct routers,

as in general several ip addresses, or interfaces, cor-

respond to a same router. Detecting which interfaces
correspond to which routers is a difficult task. Though

several methods exist, none is 100% accurate. We used

the midar tool developed by caida [5], and studied
the number of discovered routers observed since mea-

surement beginning. The corresponding plot, not pre-

sented here due to lack of space, clearly displays the

same shape as those of Figure 1(a). Moreover, previous
work has studied the number of distinct ases discov-

ered by such measurements, and showed that it also

increases significantly [23]. All in all, there is a good
evidence that new routers are actually discovered at a

significant rate, even if part of the observed growth may

be caused by discovering new interfaces for already ob-
served routers. As there is no method that allows to

know with certainty which interfaces correspond to a

same router, we limit ourselves to the study of inter-

faces in the rest of the paper.

Stability of ip addresses. To analyze more in depth the

dynamics of the ego-centered views, we compute two

quantities for each ip address. Its observation number
is simply the number of distinct rounds it was observed

in. An ip address is in general observed in blocks of sev-

eral consecutive rounds, preceded and followed by one
or more rounds during which it is not observed. More

precisely, the block number of an ip address is the num-

ber of groups of consecutive rounds in which it is ob-
served. For example, an ip address which was observed

2 Since the woolthorpe dataset was collected after the end
of the ovh dataset measurement, we shifted x-axis one year
for the plot for the woolthorpe dataset, so that both plots
appear in the same time span.
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Fig. 1 Properties of the observed dynamics.

on rounds 1, 3, 4, 7, 8, 9, and 10 has an observation
number of 7 and a block number of 3.

Fig. 1(b) presents the correlation between these quan-
tities for the woolthorpe dataset 3. Each dot corre-

sponds to an ip address, and its coordinates are its ob-

servation number on the x-axis and its block number
on the y-axis. The plot presents a clear parabola shape.

This can be explained by load-balancing routers. If a

load-balancing router randomly spreads traffic among
k paths 4, each router belonging to any of these paths

has a probability p = 1/k of being observed at each

round, leading to an observation number equal to rp

approximately, where r is the total number of rounds
performed. A given round is then the first of a con-

secutive block of observations for one of these routers

with the probability p that this router was observed in
this round, multiplied by the probability 1 − p that it

was not observed in the previous round. Multiplying

this probability by r gives the expected block number,
which is then equal to rp(1− p) and is the equation of

the parabola. This is a simplification of the real case

in which a router may belong to paths used by several

load balancers, themselves belonging to paths used by
other load balancers. In practice, an ip address belong-

ing to load-balanced paths can have any probability p,

0 < p < 1, of being observed.

We can also observe a large number of dots close to

the y = x/2 line. They correspond to addresses that
are observed only during a finite part of the measure-

ment, and have during that time a probability p = 1/2

of being observed, due to load balancing. If such an
ip address is observed with a probability 1/2 during k

3 We computed this plot for the longest uninterrupted part
of the measurement, which represents 25322 rounds.
4 It has been shown [2] that per-packet or per-flow load-

balancing routers spread traceroute probes equally among
all paths to the destination, which is roughly equivalent to
randomly choosing a path.

rounds, its observation number will indeed be x = k/2,
and its expected block number will be y = k(1/2)2 =

x/2.

Finally, a large number of ip addresses are close to
the x-axis. This means that, whether they are observed

in a large or small number of rounds, they are mainly

observed during blocks of consecutive rounds, with few
interruptions.

3 Causes of the observed dynamics

It is acknowledged that load-balancing routers play a
significant role in the observed dynamics of routes with

traceroute-like measurements [9,2]. Previous work also

suggests that routing dynamics play a key role in the
continuous discovery of new ip addresses in our mea-

surements [23]. This section identifies the strong role

played by these factors in our observations.

These two factors play different roles. Suppose first

that there is no load balancing. In this case, a measure-

ment will discover routing changes as they occur, and

the longer a measurement lasts, the more ip addresses it
will observe (because more changes will occur). If on the

contrary there are no routing changes but load balanc-

ing is used, then performing more measurement rounds
will lead to observe more ip addresses, independently

of the time elapsed between consecutive rounds 5. The

observed dynamics is a combination of these factors.

In order to study this rigorously, we use the woolthorpe

data set and simulate slower measurements by consid-

ering only one out of every two rounds. Fig. 2 presents
the number of distinct ip addresses observed with both

these measurements, as a function of time elapsed since

5 This is of course only true under certain conditions on the
number of measurement rounds and the time elapsed between
consecutive rounds.
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Fig. 2 How the frequency impacts the number of discovered ip addresses.

the beginning of the measurement, and the number of

measurement rounds performed.

As expected, less ip addresses are observed over time

with the slow measurements than with the faster ones.

Fig. 2(a) shows that in a given time interval, performing
more measurement rounds therefore allows to discover

more ip addresses. This confirms that several measure-

ment rounds are needed to discover all existing routes.

This is caused by factors such as load balancing. Con-
versely, Fig. 2(b) shows that the slow measurements dis-

cover more ip addresses at each round than the faster

ones. Therefore if more time elapses between two con-
secutive rounds, then each round discovers more ip ad-

dresses. This indicates that routes evolve with time.

In both cases, the gap between the plots for the slow
and faster measurements are significant, which shows

that both factors play an important role in the observed

dynamics. This is why we propose a model that incor-
porates load balancing and route dynamics.

4 Model

Our purpose here is to propose relevant and simple

mechanisms that reproduce the observations made in

Section 2. We do not aim at proposing a realistic model,
but rather at providing a first and significant step to-

wards understanding the impact of simple mechanisms

on the observed dynamics. This model incorporates four
ingredients: the routing topology, the routes from the

monitor to the destinations in this topology, load bal-

ancing, and routing changes. For modeling each ingre-

dient, we try to make the simplest choice possible, our
goal being to obtain a baseline model which makes it

possible to investigate the role of each component, and

to which future and more realistic models should be
compared.

We represent the topology by a random graph. In

order to strengthen the conclusions drawn from our

study, we used two different models generating different

topologies: the Erdös-Rényi model [12] which makes no

hypothesis on the structure of the graph and is there-
fore the simplest model possible and the configuration

model [3] in order to generate graphs with power-law

degree distributions. The random graph model has two
parameters: the numbers n of nodes and m of links.

The configuration model has two parameters: the num-

ber n of nodes and the exponent γ of the power-law. As
we will see in the next section, the comparison between

results obtained with both generation processes gives

insights on the impact of the topology on the observed

dynamics.

Given a graph representing the topology, we assume
that the route between the monitor and a destination is

a shortest path, which can be obtained by performing

a breadth-first search (BFS). In order to simulate load
balancing, each node chooses at random the next node

on a shortest path to the destination, and we therefore

implement a random BFS. It generates a shortest-path

tree from the monitor to the destinations by consider-
ing the neighbors of explored nodes in a random order.

These routing trees will therefore be different from one

random BFS to the next, even if the underlying graph
does not change.

Second, we need to model changes in the routing
topology. We use a simple approach based on link rewiring,

or swap. It consists in choosing uniformly at random

two links (u, v) and (x, y) 6 and swap their extremities,
i.e. replace them by (u, y) and (x, v).

Finally, our simulation setup consists in the follow-
ing. First, we generate a graph G1. From G1, we ran-

domly select one node as the monitor and d nodes as the

destinations. We then simulate r measurement rounds
by iterating the following steps:

6 We choose them such that the four nodes are distinct.
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ning for various values of s (random graphs, n = 500, 000,
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1. extract a routing tree Ti from Gi (i ∈ [1..r]) by
performing a random BFS from the monitor towards

the destinations;

2. modify the graph Gi by performing s random swaps,
which produces the graph Gi+1. s is a parameter of

the model.

This process generates a series of r trees T1, T2, . . . , Tr

which simulate periodic tracetree measurements, on
which we can conduct similar analysis as those we per-

formed on real data.

5 Results

In this section we show that this model is relevant to ex-

plain the dynamic properties presented in Section 2. To

that purpose, we perform several simulations varying

the parameters of the model: the numbers n of nodes,
m of links, d of destinations, and s of swaps per round.

Our goals are to find (1) whether the simulations re-

produce the observations and (2) how the different pa-
rameters impact the results and what are the relations

between them.

5.1 First observations

Evolution of the number of distinct nodes. In order to

answer the first question, we present Fig. 3 the evo-

lution of the number of distinct nodes observed over
time for Erdös-Rényi random graphs with n = 500, 000,

m = 1, 000, 000, d = 3, 000 and various values of the

number s of swaps. It shows a similar behavior to the
one we observed in real data (see Fig. 1(a)). In particu-

lar all the curves present clearly a fast initial growth
7 and then a more or less linear progression. More-

7 this phase lasts more than 1 round, although it is difficult
to visualize it on the plot.

over, the slopes of the curves increase with the num-

ber of swaps. This is due to the fact that with a higher
number of swaps, the paths to the destinations change

more quickly and thus more nodes are discovered at

each step.

This figure also show that when the underlying graph

does not evolve (s = 0), there is only an initial growth

in which all shortest paths are explored. Once all nodes
on these paths have been discovered, the curve becomes

flat. This confirms that the regular discovery of new ip

addresses in real data may stem from route dynamics.

Observation number vs. block number. We also present
in Fig. 4 the correlations between the observation num-

ber and block number for the same simulations.

For s = 10 (Fig. 4(b)), the main invariants we ob-
served in Fig. 1(b) are reproduced: the parabola, the

y = x/2 line and a dense strip close to the x-axis. As

already explained in Section 2, the line y = x/2 cor-

responds to nodes that are observed with probability
p = 1/2 for a given duration, and are not observed be-

fore or after. We also observe a high density of nodes

on a line with equation y = (r−x)/2, r being the total
number of rounds performed. This line has a similar ex-

planation: it corresponds to nodes which are observed

with probability p = 1/2 for a given duration, and are
observed in all rounds before and after that. Although

this line is not present in Fig. 1(b), it sometimes can

be observed in other datasets, although not as clearly

as here.

When no route dynamics is simulated (s = 0, Fig. 4(a)),

only the parabola is present, thus confirming that this

phenomenon observed in real data is due to load balanc-
ing mechanisms which are well captured by the random

BFS model. At the opposite, when the number of swaps

is too high (Fig. 4(c) and 4(d)), route dynamics get the
better of load balancing phenomena and the parabola

tends to vanish.

Assessing the results. The simulations presented above

indicate that the model succeeds in reproducing the
two main characteristics identified in the data. In order

to assess more formally this statement, we performed

extensive analyses that we present below.

The first question that arises is whether the linear

progression is truly linear or just seems so, both for real

data and simulations. In order to answer that question,

we performed several tests to check that this is indeed
the case. We only describe the following one, due to

space limitations: given a plot that goes from round 1

to round r, we (1) manually identify a value r0 such
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Fig. 4 Observation number vs. block number for various values of s (random graphs, n = 500, 000, m = 1, 000, 000, d = 3, 000).
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that the initial fast increase is over after r0 rounds 8;

(2) consider several intervals of different lengths over

the remaining r−r0 rounds; (3) perform linear fits with
the least square method on all these intervals; and (4)

finally check that all the obtained values for the slopes

are consistent.

The second issue comes from the fact that results
naturally vary from one simulation to another: the slope

may vary and the plot may present some sharp increases

at some points, as can be seen in Fig. 3. In order to cap-

ture the notion of typical slope of the plot, we therefore
run a large number of simulations with a given set of

parameters and consider the plot of the average result

over all simulations. We then perform a linear fit over
this plot which gives the typical slope α.

We applied this methodology to explore the simu-
lations over Erdös-Rényi graphs, which we call random

graphs (Section 5.2) and we then compared the obtained

results with simulations performed on random graphs
with a power-law degree distributions, which we call

power-law graphs (Section 5.3).

5.2 Random graphs

Node discovery. To confirm the results of Section 5.1
we applied the methodology presented above on simula-

tions for random graphs with n = 100, 000 and d = 300

for various numbers of links and swaps. It makes it

8 We are not interested here in the smallest such value,
making finding a relevant value very easy.

possible to study more precisely the impact of the dy-

namics (number of swaps s) over the node discovery

(slope α). Results are presented Fig. 5. We observe that
the slope increases almost linearly with the number of

swaps. This indicates a strong correlation between the

observation of new nodes and the underlying dynam-
ics, which confirms the intuition given by Fig. 3. With

a higher number of swaps, the topology changes more

frequently and, consequently, more paths are affected
at each round.

Besides, the plot also shows that the relation be-

tween the two quantities is affected by the total num-
ber of links in the graph. Intuitively, the swaps are less

likely to impact the paths from the monitor to the des-

tinations if the graph is more dense. This is confirmed

on the plot: for a given number of swaps, the slope is
higher for graphs with 200, 000 links than for graphs

with 800, 000 links.

Swaps vs. links. We studied more deeply the relation

between the number of swaps s and the number of links

m by making the two parameters vary at the same time.
We set n = 100, 000 and d = 300 and made simulations

with several values of s andm. The results are presented

on Fig. 6. We first observe that, for a given number of
swaps, the larger the number of links, the smaller the

slope of the corresponding curve, which confirms that

when the number of links increases, a smaller fraction

of them is affected by the swaps. Notice however that,
for different simulations with a same ratio s/m, the cor-

responding slopes are not equal. For instance, we can

observe that for s/m = 10−5 (the two curves marked
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with triangles), the slopes are equal to 0.46 and 0.38,

respectively. We will study more in depth the relation-
ship between m and α in Section 5.3.

Number of destinations. Finally, we also studied the

impact of the number of destinations d for graphs with

n = 100, 000, m = 800, 000 and s = 2 (Fig. 7). In-
tuitively, increasing the number of destinations causes

the number of nodes on the shortest paths to the desti-

nations to increase. Indeed, we observe that the initial
growth phase, which corresponds to the discovery of all

nodes on all shortest paths to the destinations, reaches a

higher value when the number of destinations increases.

As before, this phase is followed by a linear progression.
Notice that increasing the number of destinations also

increases the slope. This is clearly due to the fact that

since the size of routing trees from the monitor to the
destinations increases with the number of destinations,

the probability for a swap to affect such a routing tree

increases likewise.

5.3 Impact of the underlying structure

In order to study the impact of the underlying topol-

ogy’s structure, we compared the behaviors observed

above for random graphs to those obtained for power-

law graphs.
The observations made for power-law graphs are

the same, qualitatively, as the ones made for random

graphs. The number of nodes observed since measure-
ment beginning displays a linear progression after a fast

initial growth, and the correlations between block num-

ber and observation number have the same character-
istics as the ones for random graphs, depending on the

number of swaps.

We do however observe a quantitative difference:

new nodes are observed at a slower rate for power-law
graphs than for random ones. This can be observed in

Figure 8, which presents the number of nodes observed

since measurement beginning for a power-law graph

with exponent 2.3, which corresponds to approximately

200,000 links, and two random graphs. The slope of the
curve for the power-law graph is indeed much smaller

than the one for a random graph with the same number

of nodes and links.

The average distance may play a role in this. It has
indeed been proven that the average distance is smaller

for power-law graphs (for which it is in the order of

log log n [8]), than for random graphs (for which it is

in the order of log n [4]). This implies that shortest
path trees from the monitor to the destinations will

have fewer nodes in power-law graphs than in random

graphs, naturally inducing the observation of fewer new
nodes. However, though this certainly plays a role, this

is not enough to explain the observed difference. Fig-

ure 8 shows that the slope of the curve for the power-
law graph is also smaller than the one for a random

graph with the same average distance (and hence with

m = 1, 200, 000 links).

As we can observe from the three graphs used above
as an example, the structural differences between ran-

dom and power-law graphs lead to important differ-

ences in the average distance and/or in the number of

links. As observations made in the previous section sug-
gest, the slope of the curve for the number of nodes

should intuitively be proportional to the probability

that a given swap will change the shortest path tree
from the monitor to the destinations. Let us call sptl
the typical 9 number of links in a shortest path tree from

the monitor to the destinations.

Table 1 compares the value of sptl for a power-law
graph and two random graphs: one with the same av-

erage distance and one with the same number of links.

We observe that it highlights additional structural dif-

ferences between these two types of graphs: though the

9 In the same way that we performed several simulations
and averaged the results in order to obtain the typical behav-
ior for given model parameters, we generate several graphs
with the same size and number of destinations to compute
the typical size of a shortest path tree.
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Avg. dist. sptl
power-law, m = 2 · 105 4.0 545
random, m = 12 · 105 3.9 792
random, m = 2 · 105 8.4 1420

Table 1 Average distance and size of shortest path trees for
different graphs. n = 100, 000, d = 300.

the average distance is approximately equal in a power-

law graph with exponent 2.3 and a random graph with

12 ·105 links, the numbers of links in shortest path trees

from the monitor to the destinations are significantly
different.
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PL, exp = 2.7, m =~ 10e5

Fig. 9 Slope of the curve of the observed number of links vs
sptl/m for different graphs and different destination num-
bers. s = 2. For all graphs we used several values of d:
d = 100, 200, 300, 400, 500

Finally, Fig. 9 plots the slope of the curve of the ob-

served number of links 10 since measurement beginning

vs sptl/m for different types of graphs. For each type of
graph, we perform simulations using different numbers

of destinations, which induces different values of sptl.

We observe a strong correlation between these two
quantities, meaning that sptl/m plays a key role in the

observed behavior, for all types of graph. Though this

does not fully allow us to understand the model’s be-
havior, this shows that the number of links and the

size of a shortest path routing tree are key parameters

for understanding the quantitative difference between

random and power-law graphs.

As a conclusion, by exploring the impact of the pa-

rameters, we showed that a wide range of their values

are relevant. In particular, they all produce a behav-

ior qualitatively similar to what we observed in real
data. The fact that the observed behavior for random

and power-law graphs is qualitatively the same also

strengthens the relevance of the model.

10 Since swaps affect links, the probability that a shortest
path tree is affected by a swap depends on its size in terms
of links, and it is consistent to study the number of links

observed since measurement beginning, which has the same
behavior as the number of observed nodes.

6 Related work

Study of the dynamics of the Internet topology has been

tackled both by analyzing the dynamics of individual
routes [29,31,18,17,36] and from a more global per-

spective, mainly at the as- or ip-level [14,7,21,25,27,

26,15,32,11,10]. Load balancing has also been acknowl-
edged for playing an important role in the dynamics of

routes as measured with traceroute-like tools [2]. Cunha

et al. [9] used a method for measuring load-balanced

routes, i.e. routes containing one or more load-balancing
routers, and study their dynamics.

Some works [16,27] argue that the topology dynam-
ics should be taken into account in order to produce re-

alistic models for the Internet topology. Work on mod-

eling this topology and its dynamics can be roughly di-
vided between approaches aiming at realistically mim-

icking the evolution mechanisms of the topology, e.g.

reproducing the criteria taken into account by ASes for

creating peering or customer-provider links, see for in-
stance [13,6,35,28,22], and approaches aiming at re-

producing global network characteristics through sim-

ple mechanisms, thus exhibiting simple causes for more
complex observations. This paper belongs to this sec-

ond approach. Tangmunarunkit et al. [33] showed that

this approach is relevant by establishing that network
generators based on local properties, such as the degree

distributions of nodes, can capture global properties of

the topology, such as its hierarchical structure. Most re-

lated to our characterization and modeling of the evolu-
tion of the Internet topology is the work by Oliveira et

al. [25], which analyzes the as topology and shows that

real topology dynamics can be modeled as constant-
rate births and deaths of links and nodes. In a similar

spirit, Valler et al. model BGP routing churn by a pro-

cess similar to an epidemic spreading on a network [34].
Park et al. [28] studied several growing models for the

Internet topology, i.e. models in which nodes and links

are progressively added over time. They compared the

evolution of these induced networks with the evolution
of the real topology, and use this to distinguish between

the quality of the different models.

Whereas most existing works focus on the long-term

evolution (e.g. from the Internet birth to current times)

of the physical AS topology, we are concerned here with
the short- to medium-term evolution of the routing topol-

ogy at the ip-level. The routing and physical topology

are closely linked but not identical objects. In particu-

lar, routing changes can occur in the absence of physi-
cal changes. They are closely linked to BGP dynamics

which have been studied for instance in [18,21,34,36].

Finally, our model does not take into account node ap-
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pearance and disappearance, which would be necessary

for modeling the long-term topology evolution.

Finally, note that this paper is an extended version

of an earlier work [24] in which we performed a prelim-
inary analysis of the different behaviors observed for

simulations with random and power-law graphs. This

version gives evidence that load-balancing and rout-

ing dynamics play a key role in the observed properties
of the IP-level routing topology dynamics. It presents

a detailed and rigorous analysis of the impact of the

model parameters, as well as an explanation of the
differences observed between random and power-law

graphs.

7 Conclusion

In this work we conducted periodic measurements of

ego-centered views of the Internet topology and stud-
ied their dynamics. We isolated invariant characteris-

tics of these dynamics, and identified load balancing

and evolution of the routing topology as key factors in
the observed properties.

Based on this observation, we proposed a model for

the dynamics of the topology, which integrates both
load balancing and routing changes. Simulations show

that this model captures the main characteristics of the

dynamics of the ego-centered views. We performed an
analysis of the underlying topology structure by com-

paring random and power-law graphs. We showed that

there is a quantitative difference in the corresponding
behaviors, which depends mostly on the difference in

the relative size of a shortest path tree with respect to

the total number of links.

Our model is based on simple mechanisms, both for

the topology generation and the characteristics of route

dynamics. It is therefore not suitable for generating re-
alistic time-evolving topologies. However, the fact that

it captures the main characteristics of the observed ego-

centered views shows that the factors it mimics play

a strong role in the Internet routing topology dynam-
ics, which offers key insight on the understanding of

these dynamics. We therefore consider this model as a

key step towards the realistic modeling of the Internet
topology dynamics, as well as towards its understand-

ing.

Future work lies in two main directions. First, we

strongly believe that this model can be used to estimate

some properties of the actual IP-level routing topol-

ogy that are not directly available through measure-
ments. For instance, performing more extensive studies

of the relations between the model’s parameters and

the observed behavior, such as the one presented in Fig-

ure 5, would allow to infer the parameters from the ob-

served behavior. Applying this knowledge to real-world
data would allow to estimate the real-world values cor-

responding to these parameters, such as for instance

the frequency of link changes in the whole topology.
Moreover, since our model is based on random graphs

and simple mechanics for load balancing and routing

dynamics, it lends itself well to formal analysis. This
would allow to obtain formal proofs for such results.

Second, the field of Internet topology modeling is

very active, and models far more realistic than random

graphs are available. One should explore the combina-
tion of our routing mechanisms principles with these

topology models, to investigate the role played by the

topology structure on the observed dynamics. In par-
ticular, our model does not take into account the long

term topology evolution, since it does not model node

birth or death. Coupling the ingredients of our routing

dynamics with, e.g., a growing model for the Internet
topology which would reflect its long term dynamics

would surely lead to insightful results.

Acknowledgements:

This work was partly funded by the European Com-

mission through the FP7 FIRE project EULER (Grant

No.258307). It was also supported in part by a grant

from the Agence Nationale de la Recherche, with ref-
erence ANR-10-JCJC-0202. Finally, we thank Vincent

Cohen-Addad, Louis Fournier, Antoine Javelot and Sura-

bhi Sankhla for their fruitful collaboration, and Mat-
thieu Latapy for enlightening comments.

References

1. Achlioptas, D., Clauset, A., Kempe, D., Moore, C.: On
the bias of traceroute sampling. Journal of the ACM
56(4) (2009)

2. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F.,
Friedman, T., Latapy, M., Magnien, C., Teixeira, R.:
Traceroute Anomalies: Detection and Prevention in In-
ternet Graphs. Computer Networks 52, 998–1018 (2008)

3. Bender, E.A., Canfield, E.R.: The asymptotic number of
labeled graphs with given degree sequences. Journal of
Combinatorial Theory (A) 24, 357–367 (1978)

4. Bollobás, B.: Random Graphs. Academic Press (1985)
5. CAIDA: MIDAR antialiasing tool. http://www.caida.

org/tools/measurement/midar/

6. Chang, H., Jamin, S., Willinger, W.: To peer or not to
peer: modeling the evolution of the internet’s AS-level
topology. In: Proceedings of IEEE INFOCOM (2006)

7. Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker,
S., Willinger, W.: The Origin of Power-Laws in Internet
Topologies Revisited. In: IEEE Infocom (2002)



10

8. Chung, F., Lu, L.: The average distances in random
graphs with given expected degrees. Proceedings of
the National Academy of Sciences 99(25), 15,879–15,882
(2002). DOI 10.1073/pnas.252631999. URL http://dx.

doi.org/10.1073/pnas.252631999
9. Cunha, I., Teixeira, R., Diot, C.: Measuring and Charac-

terizing End-to-End Route Dynamics in the Presence of
Load Balancing. In: Proceedings of Passive and Active
Measurement Conference (2011)

10. Dhamdhere, A., Cherukuru, H., Dovrolis, C., Claffy, K.:
Measuring the evolution of internet peering agreements.
In: Proceedings of IFIP Networking (2012)

11. Dhamdhere, A., Dovrolis, C.: Twelve years in the evolu-
tion of the internet ecosystem. IEEE/ACM Transactions
on Networking 19(5), 1420–1433 (2011)
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