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Abstract

RCCS is a variant of Milner’s CCS where processes are allowed a controlled form
of backtracking. It turns out that the RCCS reinterpretation of a CCS process is
equivalent, in the sense of weak bisimilarity, to its causal transition system in CCS.
This can be used to develop an efficient method for designing distributed algo-
rithms, which we illustrate here by deriving a distributed algorithm for assembling
trees. This requires solving a highly distributed consensus, and a comparison with
a traditional CCS-based solution shows that the code we obtain is shorter, easier
to understand, and easier to prove correct by hand, or even to verify.

1 Introduction

We propose in this paper to illustrate a method for deriving distributed al-
gorithms. The broad idea is to solve a simpler problem, and then reinterpret
the obtained solution assuming a generic distributed backtracking mechanism.
This is reminiscent of the classic breakdown of solutions to NP problems into
an exploration (guessing the solution) and a verification phase (checking the
guess is correct). It is also reminiscent of simulated annealing methods where a
locally-driven search is backed by a random perturbation. Another analogy is
with declarative programming where terse solutions can be obtained because
the ambient evaluation framework includes a generic enumeration mechanism.

It turns out that the notion of a solution to a simpler problem can be neatly
characterised in terms of the theory of concurrent systems, using the notion of
causal transition system, and so does the correctness of the generic backtrack-
ing mechanism. A rather general result then ensures that the reinterpreted
solution is indeed a solution to the original problem [4].

This compares best with direct approaches when the problem of interest
needs reaching a consensus which is itself highly distributed. Thus, for the
purpose of illustrating the method, we choose a class of problems which is
a simple idealisation of the phenomenon of self-assembly, where simple parts
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assemble in some predefined spatial arrangement by means of local and asyn-
chronous interactions. Solutions of such problems indeed involve arbitrarily
complex distributed consensus.

Specifically, we derive a distributed algorithm for an ensemble of processes
to self-assemble in patterns described as trees. To formulate the algorithm,
we use a partially reversible derivative of CCS [12], called RCCS, which in-
troduces a distinction between reversible and irreversible computation steps,
together with a notion of distributed memory which allows backtracking re-
versible steps [3].

The algorithm itself is obtained indirectly. One first defines a simple CCS
algorithm such that any allowed tree construction can be simulated, and con-
versely all trees resulting from a series of local interactions are allowed. This
is not yet a solution since the induced assembly may deadlock, but it gets very
close to being one. Indeed, by merely reinterpreting the same algorithm in
RCCS, and thus allowing backtrack on reversible actions, one obtains a real
solution. For the sake of evaluating the method we compare the first algorithm
with a direct solution in CCS which explicitly copes with deadlocks. One sees
clearly that the latter is both harder to understand, and to prove correct, and
also assumes more computational power from the basic processes.

There are limitations to this method. It is likely to provide significantly
simpler solutions only to problems in need of complex consensus. Another
limitation is that it is for the moment restricted to problems the solution of
which can be expressed in CCS. However, recent developements show that cor-
rect backtracking mechanisms can be derived for a vastly more comprehensive
SOS-based class of agent-languages [15], and that the reinterpretation theo-
rem can be made to bear in the abstract framework of monoidal categories,
and thus also covers more general grounds, such as Petri Nets [5].

The paper is self-contained but for the more technical notion of causality
which is treated informally; a rigorous treatment is given in ref. [3,4]. Sec. 2
presents the self assembly specification; Sec. 3 introduces the algorithm in
CCS; Sec. 4 shows that although it may deadlock, it is well designed in that
its causal computations are as in the specification, and that it is therefore
correct in RCCS; Sec. 5 compares with a direct solution in CCS. 1

2 Specification

The aim of this section is to define the specification for our distributed imple-
mentation as a labelled transition system (LTS).

1 A preliminary version of this work was presented as a poster at the 7th International
Conference on Artificial Evolution, Lille, France, Oct 26–28, 2005.
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2.1 Transition systems and Bisimulation

A labelled transition system consists of a triple: a state space S, a set of labels
(or actions) L, and for each l ∈ L, a binary relation over S, written →l and
called the transition relation. Sometimes one also adds an initial state s0 ∈ S
to the preceding data. We will write →w, with w = l1 · · · ln a word over L, for
the composite relation →l1 ; · · · ;→ln .

Given some specification of a distributed system (such as the one given
below in this section), and another LTS (possibly obtained from a CCS process
as in Sec. 3) believed to be an implementation, one needs some means of stating
the correctness of the implementation with respect to the specification. This
is given by the notion of bisimulation.

Specifically, suppose given two LTSs (S, s0, L,→), (S ′, s′0, L
′,→′), and a

relation Φ over L×L′. Define the domain of Φ as {l ∈ L | ∃l′ ∈ L′ : (l, l′) ∈ Φ},
and the codomain of Φ as the domain of the converse relation Φ−1.

Given words w, w′ over L, L′: define wΦ (w′
Φ) as the word w with all

occurrences of labels not in the domain (codomain) of Φ erased, and write
(w, w′) ∈ Φ if wΦ = l1 · · · ln and w′

Φ = l′1 · · · l′n have the same length, and for
all 1 ≤ i ≤ n, (li, l

′
i) ∈ Φ. Actions in the domain (codomain) of Φ will be

called visible, and Φ itself will be called a visibility relation, thus wΦ represents
the actions in w which are visible according to Φ.

One then says a relation ' over S × S ′ is a Φ-bisimulation, if s0 ' s′0, and
whenever s ' s′:
– if s →w t, then s′ →′

w′ t′, with (w,w′) ∈ Φ and t ' t′,
– if s′ →′

w′ t′, then s →w t, with (w,w′) ∈ Φ and t ' t′.

The two conditions above are symmetric and state that whatever series of
visible actions one LTS may perform, the other may match. In other words the
two LTSs, different as they may be, are indistinguishable by synchronisation
on visible actions; one says they are Φ-bisimilar.

In the context of CCS (see Sec. 3), one has a distinguished silent action,
written τ , and setting L = L′, and Φ = {(l, l) | l 6= τ} obtains what is
known as weak bisimulation. Only non-silent actions, as the name suggests,
are observed. An even more stringent case is when Φ is the identity relation,
i.e. , all actions are visible, and one speaks of strong bisimulation. Our slight
generalisation where the two LTSs use different sets of actions, and some
flexibility is allowed regarding which actions are visible and how they match,
will be convenient.

2.2 The specification

Let V be a set of nodes given together with a degree map δ : V → N stipulating
how many nodes a given node may connect to. The trees considered here will
be represented as:

t ::= (a, {t1, . . . , tn})

3
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where a ∈ V and n ≥ 0. Hence the simplest tree is (a, ∅) which will be simply
denoted a. Other examples are (a, {b, c}) where a has two children, b and c,
and (a, {(b, {c})}) where a and b each have one child, b and c. A childless node
will be called a leaf as usual. Trees will be considered to be commutative, that
is to say for instance (a, {b, c}) and (a, {c, b}) stand for the same tree, as the
set notation suggests.

A tree t will be said to be coherent if all nodes in t have their degree as
prescribed by the degree map δ, which means in particular that leaves in t
will have arity smaller than 1 (and exactly 1 if they are not also the root of
t). Imagine for instance that δ(a) = 2, and δ(b) = δ(c) = 1, then (a, {b, c})
is coherent, while (a, {(b, {c})}) is not. Also one has that a is coherent if and
only if δ(a) = 0. Finally, we will write n(t) to denote the nodes of t.

A state of our specification LTS is defined as a pair (N,
∑

i ti) where N ⊆ V
represent the free nodes, and each ti is a coherent tree representing the trees
already built. We write + both for the addition of multisets and the disjoint
union of sets. Labels are coherent trees over V , and transitions are given as
follows:

N + n(t),
∑

i ti →t N, t +
∑

i ti

Note that coherence is the only constraint on trees grown out of our starting
set of nodes V . Instead, one could choose a different rule for growing trees, by
specifying from the outset which trees are allowed. We opt here for the local
growth rule, since it allows for simpler notations, and the method given here
can anyway be readily adapted to the global growth case.

3 Implementation

To define agents showing a collective behaviour in accordance with the specifi-
cation given above, we use CCS [12], where the only means of communication
between agents are binary synchronisations through complementary actions.
This restriction translates effectively the intuitive constraint on self-assembly,
namely that the global behaviour should be obtained only by means of local
interaction.

3.1 CCS

CCS processes have the form:

p ::= 0 |
∑

αi.pi | (p | p) | (a)p | D(x̃)

where α ::= a | ā | τ can be a reception, an emission, or a silent action,
and D(x̃) stands for parametric recursive definitions. Sums are taken finite,
and the empty sum is denoted by 0 and called the zero process. Structural
congruence, written ≡, is the least equivalence relation over processes closed
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act ∑
αi.pi →αi

pi

p →α p′
par

p | q →α p′ | q
p →α p′ α 6= a, ā

res

(a)p →α (a)p′

p →α p′ q →ᾱ q′
syn

p | q →τ p′ | q′

Fig. 1. CCS labelled transition system.

nodei=def τ.(build
δ(i)
i | wait

δ(i)
i? ) +

∑
j∈V

rij.(build
δ(i)−1
i | wait

δ(i)−1
ij ) (1)

buildn+1
i =def

∑
j∈V

r̄ij.buildn
i , build0

i := 0 (2)

waitn+1
iα =def wi.waitn

iα, wait0
ij=def w̄j. ↑i

j, wait0
i?=def oki. ↑i

? (3)

Fig. 2. Self-assembly.

under sum, product and restriction, and such that sum and product are as-
sociative and commutative and have 0 as neutral element. One also assumes
α-conversion (renaming), and the following rule to unfold recursive definitions:
D(x̃) ≡ p if D(x̃)=def p . Thereafter processes are all considered up to ≡.

The CCS labelled transition system given in Fig. 1 explains how a pro-
cess behaves in terms of the actions it can perform. Thus any CCS process
generates an LTS, where states are processes, and labels are CCS actions.

We fix a countable subset K of CCS actions, shown as underlined in the
various examples below; these are to be later interpreted as irreversible actions
in RCCS, and play no specific role in the CCS semantics.

3.2 The implementation

With both our specification and agent language in place, we turn to the def-
inition of the CCS process describing how agents interact in order to self-
assemble. The definition is given in Fig. 2, with n an integer, i, j ∈ V ,
α ∈ V + {?}, and δ the degree function described earlier.

Each node is translated as a specific agent nodei, with i ∈ V . An agent
can either decide to be the root of a new tree (left hand side of the choice in
(1)), or be recruited by another agent (right hand side of the choice in (1)). In
both cases, two subprocesses are spawned, buildn

i , and waitn
iα, where n is the

number of nodes the agent needs to recruit, as determined by its degree δ(i); α
stands for the agent parent, if any, or for ? if the agent is a root. The process
buildn

i (2) uses rij to recruit n free agents, while waitn
iα (3) uses wj to get

confirmations of these recruitments, and then uses w̄j to send a confirmation
to its parent. In the special case the agent is the root of the tree, and has no
parent, it performs instead the final underlined action oki to indicate the end
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of the construction.

There is no intrinsic reason why wait should gather confirmations in se-
quence; this is due to the restrictive syntax of CCS which does not allow
prefixing by a set of actions (see for instance ref. [2, Sec. 3]). Likewise, using
a richer language such as π-calculus [13] would make a more elegant code,
replacing the rijs with a public name (see ref. [6, Sec. 8]). That would also
need a π-calculus analog of RCCS (see ref. [10, Chap. 9]), and this simple CCS
version, perfectible as it is, shall be enough for our illustrative purposes.

One could set the final state of an agent to be simply a zero process, but
our convention to take it to be a loop process ↑i

α =def τ. ↑i
α, indicating that

agent i was successfully recruited by agent α, makes it slightly easier to extract
the tree a given process has actually finished to build.

The complete system is represented as the product of all agents where all
actions but the final okis are restricted.

3.3 Examples

Here is a computation example with δ(a) = 2, δ(b) = δ(c) = 1:

nodea | nodeb | nodec → build2
a | wait2

a? | nodeb | nodec

→? wait2
a? | wait0

ba | wait0
ca

≡ wa.wa.oka. ↑a
?| w̄a. ↑b

a| w̄a. ↑c
a

→? oka. ↑a
?|↑b

a|↑c
a

→oka ↑a
?| ↑b

a |↑c
a

This corresponds to a single transition {a, b, c}, ∅ →(a,{b,c}) ∅, {(a, {b, c})} at
the specification level. In general, the construction of a tree t will decompose
in 2 ∗ n(t) steps. As expected, the obtained code is not correct yet, and may
well deadlock, as in the following where δ(a) = δ(b) = 1, and δ(c) = 3:

nodea | nodeb | nodec → build1
a | wait1

a? | nodeb | nodec

→ wait1
a? | nodeb | build2

c | wait2
ca

→ wait1
a? | wait0

bc | build1
c | wait2

ca

≡ wait1
a? | wc. ↑b

c| build1
c | wc.wc.wa. ↑c

a u

→ wait1
a? |↑b

c| build1
c | wc.wa. ↑c

a

At this stage, the incoherent tree (a, {(c, {b})}) is built, but there is no node
left for build1

c to recruit. Yet there is a successful trace, where a recruits b
instead of c, corresponding at the specification level to the single transition
{a, b, c}, ∅ →(a,{b}) {c}, {(a, {b})}.

6
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m ::= 〈〉 | 〈i〉.m | 〈θ, α, p〉.m | 〈|θ|〉.m

r, s ::= m � p | (r | s) | (x)r

m � (p | q) ≡ 〈1〉.m � p | 〈2〉.m � q

m � (a)p ≡ (a)(m � p) if a 6∈ m

Fig. 3. RCCS memories, terms and additional congruence rules.

Therefore, it is clearly impossible to exhibit a bisimulation relation between
the specification and the code induced LTS. However, the code is correct in
the weaker sense that its causal computations (defined below) indeed match
the specification. As we will see in the next section this is enough to ensure
correctness, provided the process is re-interpreted in RCCS. The idea is that,
for instance, the deadlocked trace above may backtrack in RCCS up until
the wrong decision of recruiting c was made, and eventually recruit b. Note
that this is not saying that the process will find a solution, it may well loop
infinitely. There are known theoretical results showing that one cannot do
better in a purely non-deterministic interpretation [14]. This is of little prac-
tical importance, since such backtracking schemes will be implemented with
probabilities, and such futile infinite loops will have probability zero.

To prevent backtracking from a successful state, where a coherent tree has
been constructed, the corresponding underlined final actions oki will be chosen
irreversible.

4 Correctness

This section reviews the implementation of distributed backtracking in RCCS,
and the reinterpretation theorem used to derive correctness of the previous
section code.

4.1 RCCS

RCCS is an extension of CCS where processes are equipped with memories
used to undo computations. Memories and terms are given in Fig. 3 where:
i = 1, 2; θ is an abstract name, drawn from a countable set I, used to uniquely
identify a communication (as the communication keys in ref. [15]); and p is a
CCS process (as in Sec. 3) with some distinguished underlined actions declared
as irreversible.

In addition to the congruence rules (see Fig. 3) for distributing memories
among forking processes, and commuting restrictions with memories (assum-
ing a was never used in the past –which is always possible using α-conversion),
product and sum are considered commutative and associative, and having 0
as neutral element, as in CCS.
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θ 6∈ I(m)
act

m � α.p + q →θ:α 〈θ, α, q〉.m � p
θ 6∈ I(m)

act-
〈θ, α, q〉.m � p →θ:α− m � α.p + q

θ 6∈ I(m)
act

m � α.p + q →θ:α 〈θ〉.m � p

r →θ:α r′ s →θ:α s′
com

r | s →θ:τ r′ | s′
r →θ:α− r′ s →θ:α− s′

com-

r | s →θ:τ− r′ | s′

r →θ:α r′ s →θ:α s′
com

r | s →θ:τ r′ | s′

r →θ:ζ r′ θ 6∈ I(s)
par

r | s →θ:ζ r′ | s
r →θ:ζ r′ a 6∈ ζ

res

(a)r →θ:ζ (a)r′
r1 ≡ r →θ:ζ r′ ≡ r2

cgr
r1 →θ:ζ r2

Fig. 4. RCCS labelled transition system.

Define I(m) (resp. I(r)) to be the set of identifiers occurring in the memory
m (resp. memories of subprocesses of r). The RCCS labelled transition system
is given Fig. 4. Its labels are of the form θ : ζ, with ζ ::= α | α− | α, and θ an
identifier. Side conditions of the form θ 6∈ I(s) ensure θ is indeed unique (or
a nounce in the cryptographic protocols terminology).

Forward action and communication rules each have their opposite, allowing
to backtrack actions, unless the action is underlined, and thus explicitely made
unbacktrackable.

Using abstract identifiers for uniquely tagging communication makes the
presentation notably simpler, than in the original presentation [4], where a
different scheme, more adapted to the theoretical study of RCCS was used.
Those are shown equivalent in the appendix.

4.2 Reinterpretation theorem

As said, the weaker notion of correction we need, uses the notion of causal
trace. Intuitively, such traces do not involve contention among agents, since
all actions therein contribute to the last one, and in addition represent atomic
successful computations, since one asks the last action to be the trace only
irreversible one.

More precisely, a trace σ is said to be causal if it contains a single irre-
versible transition t and for all σ′ ∼ σ, σ′ ends by t, where ∼ is the equivalence
relation over CCS traces obtained by permuting concurrent transitions [1].
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Here are some examples:

a.b.0 | c.0 →a b.0 | c.0 →c b.0 →b 0

a.b.0 | c.0 →a b.0 | c.0 →b c.0

a.b.0 | ā.0 →τ b.0 →b 0

The first trace is not causal since its last action b commutes to the earlier
action c, as in the second one which is causal; likewise, the last trace is causal,
since the marked action b does not commute to τ .

Definition 4.1 Let P be the set of CCS processes, K be the set of underlined
CCS actions, and define p1 →c

k p2, if there is a causal trace from p1 to p2 ending
with k.

The causal transition system induced by p, written CTS(p), is defined as
(P, p, K,→c

k).

In the examples above, one has a.b.0 | c.0 →c
b c.0, a.b.0 | ā.0 →c

b 0, and not
a.b.0 | c.0 →c

b 0.

The theorem below asserts that the LTS induced by the interpretation
of p in RCCS is equivalent to CTS(p), when observations are restricted to
irreversible actions.

Theorem 4.2 ([4]) Let p be a CCS process, and Φ be the relation {(k, θ :
k); k ∈ K, θ ∈ I}, then CTS(p) ≈Φ LTS(〈〉 � p).

4.3 Back to self assembling trees

To apply this definition to the case of interest, we need to map macro-states
(states of the specification) to micro-states (states of the corresponding pro-
cess). Define first the family of maps [[ ]]α, with α ∈ V + {?}:

[[(a, {t1, . . . , tn})]]α = ↑a
α | [[t1]]a | . . . | [[tn]]a

This obtains a map from macro-states to what one might call their standard
representation as micro-states (restrictions are not shown):

[[N,
∑

i ti]] =
∏

i∈N nodei |
∏

j[[tj]]?

Defining Φ′ = {(t, oki) | i ∈ V }, one has:

Proposition 4.3 The relation {(N,
∑

i ti), [[N,
∑

i ti]]} is a Φ′-bisimulation
between the specification LTS and CTS([[V ]]).

The proof is routine. Concretely, this is saying two things. Firstly, when-
ever some tree may be constructed from the remaining free nodes of the spec-
ification, there exists a causal sequence of interactions among the agents that
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implements it (see first example in Sec. 3). Secondly, whenever a tree is built
after a successful series of agent interactions, this tree is indeed coherent, and
therefore corresponds to a transition in the specification (this is even easier
to prove, since the number of neighbours of any given process representing a
node is always kept smaller or equal to its arity as specified by δ).

Putting that proposition together with the theorem above one obtains:

Corollary 4.4 The specification LTS and LTS(〈〉� [[V ]]), are Φ′; Φ-bisimilar.

One may object that the visibility relation Φ′; Φ used here is highly non-
injective, since it relates a tree t to some oki, which contains no other informa-
tion than the name of the process being the root of t. Using a value-passing
version of CCS, one can decorate the implementation and construct during
the assembly an expression describing the tree being constructed, which could
then be used to encode injectively t in the final irreversible action conclud-
ing the construction. However, the bisimulation relation we exhibit clearly
contains all the needed information since the macro-to-micro map itself is
injective.

5 Discussion

It remains to appreciate whether a direct solution in CCS could compare
well with the indirect solution we have obtained. We base our discussion on a
comparison with one particular reasonable direct implementation, given Fig. 5,
and obtained by patching the indirect code to recover from deadlocks. The
recruitment phase is quite similar to the one in the previous code, except build
and wait processes are now run in sequence. A more important difference is
that the root may abort the construction by running at any time the process
abortS

i which waits for the freeS(end) process to free recruited agents, and
then re-spawns the initial state. Any already recruited agent i enters the abort
state upon reception of a request by its parent using action killi. Accordingly,
the final state ↑S

iα indicating that the ith agent has finished its part of the
recruitment, in the case α 6= ? still waits for a possible such abort request
initiated by the root agent and forwarded by its parent.

Thus, the direct code may escape deadlocks. To keep things simple, we
give up part of the distributed structure of the system: a node does not wait
for the confirmations of its children until it has completed its recruiting task.
This results in a better control of the construction process at the price of a
loss of efficiency, since no agent can validate its recruitment until its parent is
ready to receive the validation. Yet the main difference is in the backtracking
mechanism: the RCCS code finds its way to a final shape by using partial
backtracking, whereas the CCS one uses a top-down cancellation procedure
to abort altogether the construction (as in ref. [9]).

One sees the RCCS code is more intuitive; this is because, in essence,
it is easier to describe what has to be done, than what has to be undone.
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nodei =def τ.build
δ(i),∅
i? +

∑
j∈I

rij.build
δ(i),∅
ij

buildn+1,S
ij =def

∑
k∈I

r̄ik.build
n,S∪{k}
ij + killi.abortS

i

buildn+1,S
i? =def

∑
k∈I

r̄ik.build
n,S∪{k}
ij + τ.abortS

i

build0,S
iα =def wait

|S|,S
iα

waitn+1,S
ij =def wi.waitn,S

ij + killi.abortS
i

waitn+1,S
i? =def wi.waitn,S

i? + τ.abortS
i

wait0,S
ij =def wj. ↑S

ij + killi.abortS
i

wait0,S
i? =def oki. ↑S

i?

freeS∪{i}(end) =def killi.freeS(end)

free∅(end) =def end.0

↑S
ij =def τ. ↑S

ij + killi.abortS
ij

↑S
i? =def τ. ↑S

i?

abortS
i =def (end)(freeS(end) | end.ni)

Fig. 5. Self-assembly directly in CCS.

Furthermore, it is necessary to prove that the complete code conforms to its
specification, and exhibit a bisimulation relation between the code and the
specification (given Sec. 2). It is not clear at all how to do this by hand,
and to get a sense of how difficult that may be, we have tested our code with
the Mobility Workbench [16], a toolkit able to verify certain properties on
π-calculus [13] processes. We succeeded in building the bisimulation relation
for a system composed of 3 agents. For such a simple system, the Mobility
Workbench already returns 600 states. Running the tool for 24 hours was not
enough to obtain an answer in the case of a system of 4 agents. 2 The rea-
son for this explosion in the size of the bisimulation is that the backtracking
mechanism induces a lot of transitory states that try to undo their local con-
structions. More details about how the indirect method helps in automated
verification can be found in ref. [11].

6 Conclusion and future work

We have presented a distributed algorithm for self assembling trees using CCS.
Part of the appeal of the solution is that both the language used and the solu-

2 Tests were made with a 1.4 GHz Pentium M with 256 MB of RAM.
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tion itself stay simple. First one formulates a solution which is only required
to be correct in weak sense. One then uses the reversible infrastructure pro-
vided by RCCS to obtain correctness. Not only the proof is greatly simplified
in so doing, but the actual code obtained is also simpler in that backtracking
stays implicit.

Our model leaves aside more subtle forms of self-assembly based on graph-
rewriting. These would likely need a more powerful language [7,6], but there
seems to be no reason why the decomposition of the self-assembly question
advocated in this paper, would not extend to these richer languages. Our
model also ignores the question of how one represents real space, in that con-
nections are represented abstractly as synchronisations. Another important
aspect of self-assembly which our model does not take into account is its quan-
titative nature, as our model only knows of non-deterministic evolutions, and
doesn’t assign to them any measure of their likelihood. More work is needed
to understand how both spatial and probabilistic features could be added to
the picture. One could think of a distributed language where agents would
use timeouts to decide to backtrack. Substituting the RCCS operational se-
mantics to the ordinary CCS one, or whichever richer language one is using,
would obtain agents that would behave correctly with respect to the global
specification. This requires first a thorough study of the impact of timeouts
on the operational semantics of RCCS, a question which we plan to address
in future work.

Decoupling in a given system the forward and backward components of its
behaviour, is even more natural in the modelling and analysis of biomolec-
ular interactions. Indeed, one may regard molecules as blind agents trying
to bind haphazardly. Each time their spatial configurations match, proteins
have a chance to bind, and these bounds are also frequently broken down.
These exploration mechanisms have been argued to be of central importance
in the evolvability of biological systems [8]. Here the implicit backtracking
mechanism of RCCS comes in handy as a transparent way to model this in-
stability [2], but, if anything, the addition of probabilities to backward moves,
so as to generate a quantitative behaviour and be able to tune the backtrack-
ing mechanism, seems even more important in this specific context, and it
remains to be seen how the method we have illustrated here can cope with
these.
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7 Appendix

Instead of abstract names, one can use memories as concrete identifiers [3].
We recall in this appendix how this is done, and argue that both the abstract
and concrete identifying schemes are in fact intertranslatable. This is useful
in so far as the reinterpretation theorem we used earlier was actually proven
only for the concrete scheme. A complete proof is in ref. [10, Chap. 3].

Concrete memories are given as:

m ::= 〈〉 | 〈i〉 ·m | 〈?, α, p〉 ·m | 〈m′, α, p〉 ·m | 〈|◦|〉 ·m
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where ? stands for an unknown communication partner, the equivalent of
which, in the semantics above, is a θ that is unique to the whole process. The
corresponding transition system, shown below, has now labels of the form µ : ζ
where µ is a set of one or two memories; rm′@m denotes the substitution of ?
with the concrete identifier m′ in 〈?, α, p〉 ·m; irreversible rules are not shown.

m � α.p + q →m:α 〈?, α, q〉 ·m � p 〈?, α, q〉 ·m � p →m:α− m � α.p + q

r →m:ā r′ s →m′:a s′

r | s →m,m′:τ r′m′@m | s′m@m′

r →m:ā− r′ s →m′:a− s′

rm′@m | sm@m′ →m,m′:τ− r′ | s′

r →µ:ζ r′

r | s →µ:ζ r′ | s
r →µ:ζ r′ ζ 6= a, ā, a−, ā−

(a)r →µ:ζ (a)r′
r ≡ r1 →µ:ζ r2 ≡ r′

r →µ:ζ r′

Given an abstract process r, and assuming any identifier occurs at most
twice in r, the following defines inductively a map Mr from an abstract process
to a concrete one (all other clauses being trivial):

Mr(〈|θ|〉 ·m) = 〈|◦|〉 ·Mr(m)

Mr(〈θ, α, p〉 ·m) =

 〈Mr(m′), α, p〉 ·Mr(m) if 〈θ, ᾱ, q〉 ·m′ ∈ r

〈?, α, p〉 ·Mr(m) else

Conversely, given a µ indexed family of identifiers θµ such that θµ 6= θµ′ if
µ ∩ µ′ 6= µ, one can map concrete processes to abstract ones (again all other
clauses are trivial):

Θ(〈|◦|〉 ·m) = 〈|θ{m}|〉 ·Θ(m)

Θ(〈m, α, p〉 ·m′) = 〈θ{m,m′}, α, p〉 ·Θ(m′)

Θ(〈?, α, p〉 ·m) = 〈θ{m}, α, p〉 ·Θ(m)

We suppose now all concrete processes have unique memories, and all abstract
processes have identifiers occurring at most twice. This is easily shown to be
preserved under computations.

Proposition 7.1 If r →θ:ζ s then ∃µ : Mr(r) →µ:ζ Ms(s) and if r →µ:ζ s
then ∃θ : Θ(r) →θ:ζ Θ(s).

For the first implication: if r →θ:τ s, take µ = {Ms(m1), Ms(m2)} where
〈θ, α, p〉 · m1, 〈θ, ᾱ, q〉 · m2 ∈ s; if r →θ:τ− s, take µ = {Mr(m1), Mr(m2)} where
〈θ, α, p〉·m1, 〈θ, ᾱ, q〉·m2 ∈ r. For the second implication, it suffices to take θ = θµ.
The side condition in the par rule (see Fig. 4) holds thanks to the unicity of
memories and the assumption that θµ 6= θµ′ whenever µ ∩ µ′ 6= µ.
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