
On the relevance of the edge-Markovian evolving
graph model for real mobile networks

Aurelie Faure de Pebeyre
LIP6-CNRS-UPMC

4 place Jussieu
75005 Paris,France

Email: Aurelie.Faure@lip6.fr

Fabien Tarissan
LIP6-CNRS-UPMC

4 place Jussieu
75005 Paris,France

Email: Fabien.Tarissan@lip6.fr

Julien Sopena
LIP6-CNRS-UPMC

4 place Jussieu
75005 Paris,France

Email: Julien.Sopena@lip6.fr

Abstract—The development of wireless devices led the scien-
tific community to focus more and more on systems of interaction
composed of moving entities. In this context, different models
have been proposed in an attempt to capture properties of the
observed dynamics. Among those models, the edge-Markovian
evolving graph model is appealing since it enables to highlight
temporal dependencies in the evolution of the graphs. This model
relies on two parameters accounting respectively for the creation
and suppression of links in the graph. Thus it assumes that these
two parameters are sufficient to characterise the dynamics during
all the evolution of the graph. In this paper, we test this hypothesis
by confronting the model to 6 datasets recording real traces
of evolving networks. In particular, we study the proportion of
created and deleted links over the time. The results show that
5 of the 6 case studies present an heterogeneous distribution of
those fractions which contradicts the underlying hypothesis of the
model. Besides, in order to understand the importance this might
have as regard structural properties of real networks, we also
study the impact the Markovian model has on the mean degree
over the time. It turns out that even in the suitable case, the
model fails to reproduce correctly this property which indicates
its inadequacy for even more complex properties of real evolving
networks.

I. INTRODUCTION
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The development of wireless devices led the scientific
community to focus more and more on systems of interaction
composed of moving entities. Those systems are characterised
by the fact that the links, defined by the proximity between
two different wireless equipments, appear and disappear con-
tinuously which makes the structure of the systems in constant
evolution. A key question of the domain consists then in taking
advantage of the properties of the observed dynamics in order
to define efficient and robust communication protocols [1].

In this context, if studies have already shown interesting
phenomena, such as the contact and inter-contact duration time
following a power-law [2] or the accordion phenomenon [3],
few of them have proposed models able to capture the
properties of the dynamics of those systems. Among the
random evolving graph models, the edge-Markovian evolving
graph model [4]–[6] is appealing as it relies on a temporal
dependency to determine the state of the graph at the next
time according to its current state. This model was used in
theoretical studies focusing on diffusion protocols, such as
flooding [7], [8] or push [9], in order to prove their efficiency.

However, even fewer analyses have been made to validate

the model as regard the real dynamics observed in mobile
networks. As far as we know, only two papers [10], [11]
have performed such an analysis. But, first, they all study the
behaviour of a particular dissemination algorithm and, second,
they do not consider properties of the dynamics inherent to
those evolving networks.

This work intends to answer this open question by
analysing rigorously the properties of different traces of mobile
networks and by studying the relevance of the Markovian
model as regard those properties on a wide range of different
datasets.

The remain of the article is organised as follow: Section II
presents the necessary background for this study, Section III
shows the main results related to the confrontation between
real data and the underlying hypothesis made by the Markovian
model while Section IV studies more precisely the impact
the model has on structural properties of evolving networks.
Finally Section V concludes the article and opens on new
perspectives.

II. BACKGROUND

In this section we provide details on the edge-Markovian
evolving graph model (Section II-A) and the datasets on which
we relies to perform our analysis of the properties of the
dynamics of evolving networks and tune the model parameters
(Section II-B).

A. Markovian model

The growing interest for mobile networks and evolving
graphs led the scientific community to recently propose models
to account for the new characteristics of those networks.
In this context, the proposition relying on random evolving
graphs due to Ferreira [12] allows to cover a wide range of
dynamics. Indeed, in this framework an evolving graph is
simply described as a succession of distinct graphs at each
time step. This allows for the reuse of all the models for
random graph generation by simply considering at each time
step independent random graphs. Although interesting for its
simplicity, this model fails to account for inherent properties
of evolving networks for which a state at a given time directly
relies on its state at the previous time step.

Many attempts have been made in order to capture this
property. J. Leskovec et. al. [13] for instance proposed a model
based on the growth of vertices and degrees. However, this



approach does not take into account the instability of the links.
In their proposition, Chaintreau et. al. [14] used sequences of
graphs generated uniformly at random to analyse the diameter
of ad-hoc mobile networks. Pellegrini et. al. [15] explored the
notion of temporal connectivity.

This is why A. Clementi et. al. [4], [8] recently introduced
the concept of edge-Markovian evolving graphs model (re-
ferred to further as Markovian model) which allows to point
out this dependency. In this model, given a graph Gt at a given
time t, the structure of the graph at the next time Gt+1 directly
depends on the one of Gt and is ruled by two independents
parameters: the probability p of creation of an edge which does
not exist and the probability d of deletion of an existing edge.

The interest of the model is twofold: first of all, it has been
proven that whatever the values of p and d, and whatever the
initial graph G0, an evolving graph generated by this model
converges towards a Erdös-Réniy random graph [16] with the
probability for an edge to exist being p̂ = p

p+d . Secondly, it has
only two parameters which enable to perform rigorous studies.
Particularly, the latter have been performed on the efficiency of
different diffusion protocols while remaining realistic as regard
the temporal dependency principle.

However, the simplicity of this model may also be its
weakness. Indeed it uses only two parameters to rule edges
creations and deletions which supposes that the value of those
parameters is representative of the whole evolution of the
graphs over time. This is precisely what we intend to assess
in this paper.

On a related notice, it is worth noticing that Scherrer et.
al. [6] conducted an extensive analysis of mobile datasets in
order to identify key properties of the dynamics and propose
Markovian models able to reproduce it. In that sense their
work is close to the one proposed in the present paper. But it
actually differs on several aspects. Not only the datasets but
also the chosen properties are different from the ones used
in this study. Besides, they relied on properties identified in
their analysis in order to propose several distinct models able
to account for it. Our work however focuses on one simple
unique model and confront it with characteristics observed on
real datasets.

B. Dataset

In order to test the relevance of the Markovian model, we
have analysed 6 datasets which present traces of human-contact
networks collected during different real-world experiments.
In each of these experiments, people were caring devices
able to detect the presence of others similar devices nearby.
The frequency of the measurements are different from one
experiment to another and can vary from the second to the
minute.

In our study, we used:

• Rollernet [3] : This dataset was collected during
a rollerblading tour in Paris in August 2006. The
tour lasted more or less 3 hours with a break of
about 30 minutes; rollerbladers travelled about 20
miles; the tour took place in the streets which implies
acceleration and speed reduction especially during
passing traffic lights. iMotes have been given to 62
participants covering the entire assembly, knowing

that about 2500 people where participating in the
tour. iMotes distributed used bluetooth technology and
looked at their neighbourhood every 15s.

• Infocom 05 and Infocom06 [2] : Those two ex-
periments were collected during the Infocom con-
ferences respectively at Miami and Barcelona. Like
RollerNet, they used the iMote technology with a
scan every 120s. The first one (March 2005) lasted
4 days with 41 participants over the 800 participants
to the conference. The second one (April 2006) had
98 devices among which 78 were participants to the
conference, 17 were static and 3 have been placed in
the elevators.

• Unimi [17] : This dataset was collected in the univer-
sity of Milan by using Pocket Mobile Trace Recorders
(PMTR) with 44 participants. These devices sent a
signal every seconds.

• hypertex09 [18] : used radio badges distributed to
113 participants at the Hypertext conference (June
2009). These badges have recorded face to face con-
tacts every 20s during 2,5 days.

• Sociopattern [18] : This dataset was collected during
an exhibition on infectious propagation in Ireland. It
also used radio badges distributed at the beginning
of the exhibition. It is the only dataset in which every
person participating to the exhibition had a badge. The
experiment lasted 3 months with one record per day.
The number of participants (88 to 410) is different
from one day to another.

The table I below summarises some characteristics of the
datasets.

Datasets Duration Participants Contacts Freq. (sec.)
RollerNet 3 hours 62 60 146 15
Infocom05 4 days 41 17 682 120
Infocom06 4 days 98 148 784 120

HT09 2,5 days 113 9 865 20
Socio 1 day 151 2 051 20
Unimi 10 days 44 11 895 1

TABLE I. DATASETS CHARACTERISTICS

In this study, we used all the datasets presented above.
However due to space limitations, we have decided to present
only 3 of them in the rest of the paper. We have chosen
RollerNet, Infocom06 and SocioPattern because
they stem from 3 distinct experiments and thus present differ-
ent characteristics. Moreover, the duration of those experiences
is totally different which entitles to draw general conclusions
which do not depend of the duration time. Finally, the results
obtained with the 3 other datasets are similar to what is pre-
sented here. More precisely, the results with Infocom05 are
very similar to those of Infocom06 and the ones of Unimi
and HT09 to SocioPattern. It is worth noticing that in
SocioPattern, the number of participants is different every
day. Here we only consider one particular day representative
of a mean activity (in terms of number of participants).

III. ANALYSIS OF THE DYNAMICS

This section deals with the evolution of creation and
deletion of links over time in the different datasets. This is
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Fig. 1. Evolution of the mean degree over time

the main element on which is based the Markovian model.

We start by displaying the evolution of the mean degree
over time in the different datasets. The results presented in
Figure 1 show that all the graphs have a very low den-
sity, with a mean degree of 1.4 for RollerNet, 1.3 for
Infocom06, and 0.06 for SocioPattern, with a density
of 2.2(10−2), 1.3(10−2) and 4(10−4) respectively. In addition,
to the low density of connexions (particularly obvious for
SocioPattern), the plots of Figure 1 show a very strong
variation of the number of links in the 3 experiments. However,
if those variations are quite regular for RollerNet, it is not
the case for the two others traces. This is more emphasised
for Infocom06, where we can distinguish relatively stable
periods and sharp increases and decreases of the mean degree.

Since the Markovian model relies on mean values, we have
studied the impact of those variations on the two parameters
of the model. Thus we computed, for each time step t, the
proportion of created (resp. deleted) links according to the
number of non-existing (resp. existing) links at time (t − 1).
The results are shown in Figure 2 (resp. Figure 3).

As regard the creation of links, Figure 2 reveals that the
range of values on all the plots is quite wide. This is particu-
larly true for Infocom06 (Figure 2(b)) and SocioPattern
(Figure 2(c)) on which the most extreme events are clearly
observable. This is confirmed by the fact that the mean (see
Table II below), the median, and the 75-percentile are very
close to 0 indicating that low values are over-represented in
those datasets. From this point of view, as regard RollerNet,
the concept of mean value seems more relevant as it seems to
position itself in the middle of the values taken over time.

Datasets RollerNet Infocom06 Socio
Created links 3.2 (10−3) 9.5 (10−5) 9 (10−6)
Deleted links 1.4 (10−1) 4.5 (10−3) 1.6 (10−2)

TABLE II. MEAN VALUE FOR THE FRACTIONS OF CREATED AND
DELETED LINKS.

The same observation can be made with deleted links
(Figure 3) for which it is even more obvious. Here, the
range taken by the values is complete ([0..1]) and some
proportions can reach the maximum value, which means that
all the existing edges have been removed. By investigating
manually the datasets, it turned out that this behaviour is easily
understandable since it is often due to the deletion of the
unique edge present (proportion is then equal to 1) in the

graphs at that time, which appends usually at the beginning
and at the end of the experiment. Finally, the RollerNet
experiment (Figure 3(a)) is again more homogeneous than the
two others which is validated by the values taken by mean,
the median, and 75-percentile.

Thus, according to the plots presented above, it seems that
characterising the dynamics of a network by two parameters is
relevant for RollerNet but is inadequate for Infocom06
and SocioPattern since the observed values are not ho-
mogeneously distributed over the experiments.
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Fig. 4. Inverse cumulative distribution function of fractions of created and
deleted links

To confirm this analysis, Figure 4 shows the inverse cumu-
lative distribution function of those fractions on each datasets.
It confirms the fact that the value of fractions of created
links (left) is heterogeneous for two datasets (Infocom06
and SocioPattern). Indeed, we can see a straight line
(in the log-log scale) over several orders of magnitude on
the curve representing the Infocom06 experiment. On the
contrary, the cumulative distribution for RollerNet sharply
decreases around the mean value (3.2×10−3), thus indicating
that the set of values spread around the mean value. The same
observation can be done for deleted links (right) even if it is
less pronounced.

The figure confirms also an important observation for the
three datasets in the case of deleted links: there is a non
negligible number of fractions equal to 1. As said before, this
observation is explained by the fact that when few links exist
in the network, the value of the fraction is usually close to
the extreme. This is especially notable when only one link
exists, the fraction being either 0 or 1. Yet, this fact seems
hardly compatible with the notion of a mean value made by
the Markovian model (cf. table II).
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Fig. 2. Evolution of the proportion of created links with mean (pink), median (green) and 75-percentile (yellow).
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Fig. 3. Evolution of the proportion of deleted links with mean (pink), median (green) and 75-percentile (yellow).

As a partial conclusion, it seems that if the present results
do not totally discredit the usefulness of the edge-Markovian
evolving graph model, the analysis performed in the present
section puts however the relevance of its underlying hypothesis
into perspectives. As usual when dealing with properties of
real networks, the dynamics of mobile networks present some
heterogeneous aspects that is not captured by models relying
on homogeneous parameters. In order to understand the impact
of this result, we now study the relation of the Markovian
model with other network properties.

IV. IMPACT OF THE MARKOVIAN MODEL

In this section, we study the evolution of the connexion in
mobile networks and compare the properties observed in real
data with the ones observed in the artificial traces generated
by the Markovian model.

Thus, we compare each real trace with its equivalent in the
Markovian model. To do so, we used the mean values of the
fractions of created and deleted links presented in section III
(see table II) and generated as much states as existing logs in
experiments.

A. Impact on mean degree

First, we study the evolution of the mean degree over time.
This characteristic is very simple (in structure) and quite close
to the model’s parameters since the degree is directly related
with the creation and the deletion of the links. As such, this
should be advantageous to the Markovian.

The obtained results are showed in figure 5 and are
compared to those obtained on the real datasets studied (fig-
ure 1). As expected, the model is not suitable for datasets like
Infocom06 and SocioPattern. Not only the variations
observed over time on data do not exist in the trace generated
by the model (which was foreseen given that the model
is homogeneous), but, more important, the extreme events
disappeared. We notice that in those two examples, the scale
of the values on the y axes is modified (divided by 2) between
real data and the model.

However, in the RollerNet experiment, the model re-
produces quite well the evolution of the mean degree observed
on the real trace. Except at the beginning, which is naturally a
bias due to the measurement protocol, the behaviour is quite
correct.

To be more precise in our analysis, we present figure 7
the inverse cumulative distribution function observed both in
real data and in the generated traces. Again, the distribution
is different for real data and for the model in the case of
Infocom06 (middle) and SocioPattern (left).

Besides, and more surprisingly, the distribution is also
different for RollerNet, whereas the comparison of fig-
ures 1(a) and 5(a) suggests that the Markovian model could
be adapted. This shows that even if the distributions of the
p and d values are homogeneous, the dynamics captured by
those two parameters is not sufficient for reproducing structural
properties of evolving networks. This raises a cautionary mes-
sage. Indeed, if a property as simple as the mean degree is not
well captured, it is very likely that more intricate properties,
less directly related to those parameters, will also be poorly
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Fig. 5. Evolution of the mean degree over time on the Markovian model.
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Fig. 6. Comparisons of cumulative distribution of mean degree.

reproduced.

B. Impact on the degree distribution

In this section, we study the distribution degree, i.e., the
probability that a node has a particular degree. This graph’s
property is particularly interesting and has a strong influence
on the efficiency of distributed algorithms.

The three histograms of figure 7 represent a comparison
of the degree distribution on real datasets (in white) and their
corresponding artificial Markovian trace (in grey). For each
degree d (on the x axis) we plot the number of nodes connected
to exactly d neighbours (y axes) as a mean value for all the
graphs of a given trace.

If we focus first on the distribution of real data (white
histogram), we notice that graphs corresponding to those
experiments have an heterogeneous degree distribution. This
is particularly clear for Infocom06 (figure 7(b)) but less
observable for SocioPattern (figure 7(c)). For the last
case, the very low number of connexions (density of 4(10−4),
section III) explains that the phenomenon is less observable.

Now, if we compare the results of the real traces (white
histogram) with the distributions obtained by the Markovian
model (in grey), we can see that the model fails in re-
producing the heterogeneous distribution. To understand this
phenomenon, it is important to remember that the evolving
graphs generated by the Markovian model converge toward an
Erdös-Réniy [16] random graph. In such graphs, the degree
distribution is known to follow a Poisson distribution (binomial
law), which is confirmed by the figure.

This last comparison shows that, although the Markovian
model relies on the dynamics of creation and deletion of
links, it fails in accounting for the repartition of those links
over the nodes as observed in the different experiments.
Indeed, the model distributes homogeneously the links in the
network while in real networks, some nodes tend to gather the
connexions and somehow “attract” other nodes – phenomenon
also referred to as preferential attachment. This indicates that
the model will face the same problem with other classical
properties such as the clustering coefficient, generated by sets
of pairwise connected devices. As regard this last property, a
first global analysis confirms the statement. Table III shows the
mean value of the clustering coefficient observed over the time
both for the real datasets and the synthetic data generated by
the model. In each case, the value of the clustering coefficient
is at least one order of magnitude lower for the model than
for the real dataset.

Datasets RollerNet Infocom06 Socio
real 1.7 (10−1) 2.9 (10−1) 4 (10−1)

model 2 (10−2) 1.9 (10−2) 0 (100)
TABLE III. MEAN VALUE FOR CLUSTERING COEFFICIENT.

V. CONCLUSION AND PERSPECTIVES

The work presented in this article intended to confront the
hypothesis of homogeneity made by the Markovian model with
the dynamics observed in real datasets recording the activity
of real evolving networks. The study showed that in most of
the cases (5 of the 6 studies), this hypothesis was contradicted
by the analysis.



0 2 4 6 8 10 12

degree
0

5

10

15

20

25
av

er
ag

e 
nu

m
be

r o
f n

od
e

rollernet
markov

(a) RollerNet

0 5 10 15 20 25

degree
0

10

20

30

40

50

60

av
er

ag
e 

nu
m

be
r o

f n
od

e

info06
markov

(b) Infocom06

0 1 2 3 4 5 6

degree
0

20

40

60

80

100

120

140

160

av
er

ag
e 

nu
m

be
r o

f n
od

e

socio
markov

(c) SocioPattern

Fig. 7. Comparison of the distributions of the mean degree.

Moreover, we have shown that, even with RollerNet,
which has an homogeneous repartition of the model’s param-
eter, the model fails to reproduce the simple property of the
mean degree over the time. Finally, the study highlights the fact
that the model can not simulate degree distribution as observed
in the real traces. This limit, resulting from the nature of the
model, can be generalised to other properties like clustering
coefficient. However, those negative results should be moderate
as regard the use of the model. Particularly, the works [10],
[11] have shown that this model could be adapted for studying
flooding diffusion protocols. Thus it is not the purpose here
to discredit the usefulness of the model but to show that the
question of its representativeness as an evolving graph model
accounting for the whole dynamics of networks is subject to
caution.

As regard the perspectives, it would be interesting to see
if a simple modification taking into account the fact that the
fractions of created and deleted links are heterogeneous would
be enough to improve the representativeness of the model. For
example, we could base the model not on the mean values
values of p and d but on sets of values for p and d whose
distributions follow an heterogeneous law.

It would also be interesting to look at some more intricate
properties than the simple evolution of the mean degree.
This one has been chosen here for its proximity with the
model’s parameters but it would also be relevant to look at
the repartition of the connexion in the networks as well as the
correlations existing between the link’s creation and deletion
over time. It is very likely that the periods with many links
creations are related to periods of few links deletions (and
reciprocally) like suggested by the accordion effect observed
on RollerNet [3].

Finally, to follow the usefulness of the model in the domain
of diffusion, it would be appealing to see how diffusion like the
gossip protocols (such as the push diffusion studied in [9]) will
perform on real data and confront it with the results obtained
with the Markovian model. This could reaffirm the interest of
the Markovian model for the community.
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