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The specification
A solution

A syntax for the trees

V : a set of nodes.

δ : V → N : degree map.

(v , {t1, . . . , tn})
edg(t, v) : number of edges connected to v in t

t is coherent ⇐⇒ ∀v ∈ n(t), δ(v) = edg(t, v)

qsdqsd

c

c

c

a

b

δ(a) = 3 δ(b) = 2 δ(c) = 1

(a, {(b, {c}), c, c})
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A solution

An LTS for the specification

The specification : SPEC = (S , L,→)

Element of the state space : (N,
∑

i ti ) with N ⊆ V and ti

coherent.

Labels : set of coherent trees

Transition relation : for all coherent tree t

(N + n(t) ,
∑

i ti )→t (N , t +
∑

i ti )
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An LTS for the specification

The specification : SPEC = (S , L,→)

Element of the state space : (N,
∑

i ti ) with N ⊆ V and ti

coherent.

Labels : set of coherent trees

Transition relation : for all coherent tree t

(N + n(t) ,
∑

i ti )→t (N , t +
∑

i ti )

We are looking for an implementation in a process algebra:

Concurrency

Binary interactions

Mathematical tool for proving correctness.
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A solution

Possible program

nodei
def
= τ.build

δ(i),∅
i? +

∑
j∈I

rij .build
δ(i),∅
ij

buildn+1,S
ij

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + killi .abortS

i

buildn+1,S
i?

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + τ.abortS

i

build0,S
iα

def
= wait

|S|,S
iα

waitn+1,S
ij

def
= wi .waitn,S

ij + killi .abortS
i

waitn+1,S
i?

def
= wi .waitn,S

i? + τ.abortS
i

wait0,S
ij

def
= w j . ↑S

ij +killi .abortS
i

wait0,S
i?

def
= oki . ↑S

i?

freeS∪{i}(end)
def
= kill i .freeS (end) ↑S

ij
def
= τ. ↑S

ij +killi .abortS
ij

free∅(end)
def
= end .0 ↑S

i?
def
= τ. ↑S

i?

abortS
i

def
= (end)(freeS (end) | end .nodei )
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What is required ?

The code is very complicated:

– equivalence with the specification

– more difficult to understand, reuse, patch, . . .
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Reversible CCS
Conclusion

The specification
A solution

What is required ?

The code is very complicated:

– equivalence with the specification

– more difficult to understand, reuse, patch, . . .

Our approach:

1 forward code in CCS

2 good properties w.r.t specification

3 lift into RCCS (nothing to do)

4 application of a theorem: RCCS term is equivalent to the
specification
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CCS
Bisimulation
Implementation
Properties

CCS : syntax

Actions: α ::= a | ā Action on a channel
| τ Silent action

Processes: p ::= 0 End of process
|∑αi .pi Guarded Choice
| (p ‖ p) Fork
| (a)p Restriction
| D(x̃) Definition

Fabien Tarissan Self assembling trees with RCCS



Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

CCS : semantics

∑
i αi .pi →αi pi

(act)
p →α p′

p ‖ q →α p′ ‖ q
(par)

p →ā p′ q →a q′

p ‖ q →τ p′ ‖ q′
(synch)

p →α p′ α 6= a, ā

(a)p →α (a)p′
(res)

p ≡ p′ →α q′ ≡ q

p →α q
(equiv)

D(x̃) ≡ p if (D(x̃) := p) ∈ ∆

Fabien Tarissan Self assembling trees with RCCS



Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

Mathematical tools

K ⊆ A: observable actions (ex. K = A\ {τ})
K c := A\K .

A relation R is a simulation if p R q implies:

p

a∈K
��

R q

∗
w∈(K c )∗a(K c )∗

��
p′ R q′

p

a∈K c

��

R q

∗
w∈(K c )∗

��
p′ R q′

It is also a bisimulation if symmetric.
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A solution . . .

nodei
def
= τ.(build

δ(i)
i | wait

δ(i)
i? )

+
∑
j∈V

rij .(build
δ(i)−1
i | wait

δ(i)−1
ij )
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CCS
Bisimulation
Implementation
Properties

A solution . . .

nodei
def
= τ.(build

δ(i)
i | wait

δ(i)
i? )

+
∑
j∈V

rij .(build
δ(i)−1
i | wait

δ(i)−1
ij )

buildn+1
i

def
=

∑
j∈V

r̄ij .buildn
i

build0
i

def
= 0
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CCS
Bisimulation
Implementation
Properties

A solution . . .

nodei
def
= τ.(build

δ(i)
i | wait

δ(i)
i? )

+
∑
j∈V

rij .(build
δ(i)−1
i | wait

δ(i)−1
ij )

buildn+1
i

def
=

∑
j∈V

r̄ij .buildn
i

build0
i

def
= 0

waitn+1
iα

def
= wi .waitn

iα

wait0
ij

def
= w̄j . ↑i

j

wait0
i?

def
= oki . ↑i

?
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. . . with deadlocks
If δ(a) = 2 and δ(b) = δ(c) = 1

nodea | nodeb | nodec → build2
a | wait2

a? | nodeb | nodec

→? wait2
a? | wait0

ba | wait0
ca

≡ wa.wa.oka. ↑a
? | w̄a. ↑b

a | w̄a. ↑c
a

→? oka. ↑a
? | ↑b

a | ↑c
a

→oka ↑a
? | ↑b

a | ↑c
a
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Bisimulation
Implementation
Properties

. . . with deadlocks
If δ(a) = 2 and δ(b) = δ(c) = 1

nodea | nodeb | nodec → build2
a | wait2

a? | nodeb | nodec

→? wait2
a? | wait0

ba | wait0
ca

≡ wa.wa.oka. ↑a
? | w̄a. ↑b

a | w̄a. ↑c
a

→? oka. ↑a
? | ↑b

a | ↑c
a

→oka ↑a
? | ↑b

a | ↑c
a

If δ(a) = δ(b) = 1 and δ(c) = 3

nodea | nodeb | nodec → build1
a | wait1

a? | nodeb | nodec

→ wait1
a? | nodeb | build2

c | wait2
ca

→ wait1
a? | wait0

bc | build1
c | wait2

ca

≡ wait1
a? | wc . ↑b

c | build1
c | wc .wc .wa. ↑c

a

→ wait1
a? | ↑b

c | build1
c | wc .wa. ↑c

a
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Implementation
Properties

Not enough ?

The implementation is not bisimilar to the specification
But has some good properties:

What is assembled is allowed

It may find a way to simulate the specification
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Main result
Correctness results

RCCS : syntax

p, q ::= (p ‖ q) |∑i αi .pi | (a)p | D(x̃) | 0 CCS

r , s ::= m . p Threads
| (r ‖ s) Parallel
| (a)r Restriction

m ::= 〈θ, a, p〉 ·m Synch
| 〈|θ|〉 ·m Commit
| 〈1〉 ·m | 〈2〉 ·m Fork address
| 〈〉 Empty
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Main result
Correctness results

RCCS : semantics

Transition: t = 〈r , θ, ζ, r ′〉
Labels: θ ∈ I ζ := α | α−

If θ 6∈ I(m):

m . α.p + q
θ:α−→ 〈θ, α, q〉 ·m . p (act)

〈θ, α, q〉 ·m . p
θ:α−−→ m . α.p + q (act−)

m . α.p + q
θ:α−→ 〈|θ|〉 ·m . p (act)
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Main result
Correctness results

RCCS : semantics

Synchronisation rules are:

(com)
r

θ:ā−→ r ′ s
θ:a−→ s ′

r ‖ s
θ:τ−→ r ′ ‖ s ′

r
θ:ā−−→ r ′ s

θ:a−−→ s ′

r ‖ s
θ:τ−−→ r ′ ‖ s ′

(com−)

r
θ:ā−→ r ′ s

θ:a−→ s ′

r ‖ s
θ:τ−→ r ′ ‖ s ′

(com)
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Main result
Correctness results

RCCS : semantics

m . (x)p ≡ (x)(m . p) if x 6∈ m
m . (p ‖ q) ≡ (〈1〉 ·m . p) ‖ (〈2〉 ·m . q)

Context rules are:

r
θ:ζ−→ r ′ θ 6∈ I(s)

r ‖ s
θ:ζ−→ r ′ ‖ s

(par)
r

θ:ζ−→ r ′ ζ 6= x , x̄ , x−, x̄−

(x)r
θ:ζ−→ (x)r ′

(res)

r ≡ r ′
θ:ζ−→ s ′ ≡ s

r
θ:ζ−→ s

(equiv)
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Causal traces

A trace σ is said to be causal if:

1 there is only one irreversible action t

2 for all σ′ ∼ σ, σ′ ends with t.
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RCCS
Main result
Correctness results

Causal traces

A trace σ is said to be causal if:

1 there is only one irreversible action t

2 for all σ′ ∼ σ, σ′ ends with t.

a.b.0 | c.0 →a b.0 | c.0 →c b.0 →b 0

a.b.0 | c.0 →a b.0 | c.0 →b c.0

a.b.0 | ā.0 →τ b.0 →b 0

Fabien Tarissan Self assembling trees with RCCS
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Main theorem

Some definitions:

K a set of underlined action in CCS

p1 →c
k p2 if there is a causal trace from p1 to p2 ending with

k ∈ K

CTS(p) = (P, p,K ,→c) : the causal transition system
induced by p

Theorem

Let p be a CCS process and Φ the relation
{(k, θ : k) | k ∈ K , θ ∈ I}, then CTS(p) ≈Φ LTS(〈〉 . p).
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On the implementation

What is not part of the theorem:

– mapping the trees into the CCS code:

[[(a, {t1, . . . , tn})]]α = ↑a
α | [[t1]]a | . . . | [[tn]]a

– mapping the states of the LTS into the CCS code:

[[N,
∑

i ti ]] =
∏

i∈N nodei |
∏

j [[tj ]]?

Proposition

Let Φ be the relation
{

(t, oki ) | i ∈ V
}

.
The relation {(N,

∑
i ti ), [[N,

∑
i ti ]]} is a Φ-bisimulation between

SPEC and CTS([[V ]]).
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Main result
Correctness results

Proving correctness in RCCS

Bisimulation is 1. and 2. weak correctness is 1. and 2’.

1. Simulation: All transactions of the spec. can be performed in
the implementation.

2. Correctness: All evolutions of the implementation lead to a
state which is also in the spec.

2’. No bad state: All evolutions of the implementation that
(causally) lead to a state must be in accordance with the
specification.
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Generic approach
Improvements

Declarative Concurrent Programming

Weakly correct p

(1)wwnnnnnnnnn
Hack

(1′) )))i)i)i)i)i)i

CTS(p) `K (p)
��

≈

p \ deadlocks

SPEC

≈PPPPP
(2)

PPPPP
≈5u5u5u

(2′) 5u5u5u

(1) Automatic: Ocaml tool (Causal)
(1’) By hand. Difficulty depends on system’s topology.
(2) Automatic: in most cases CTS(p) ≡ SPEC.
(2’) By hand beyond a certain size
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Generic approach
Improvements

Further works

Some drawbacks:

General result may imply loss of efficiency when backtracking

We strongly rely on the mapping [[·]]

Improvements:

Having more refined labels (CCS with values)

Dealing with graphs (Reversible π-calculus)

Handling a stronger property on the correctness (stochastic
behaviour)
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