
Introduction
Modelling distributed systems

Reversible CCS
Conclusion

Self assembling trees with RCCS

Fabien Tarissan

Joint work with Vincent Danos & Jean Krivine

Équipe PPS, Université Paris 7 & CNRS

INRIA-Rocquencourt, Université Paris 6

SOS – August 26, 2006

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

The problem

Question : How a collective behaviour may emerge from
elementary interactions (forward and backward)

Applications

Molecular biology (backward)
Genetic engineering (forward)
Distributed robotics (forward)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

The problem

Question : How a collective behaviour may emerge from
elementary interactions (forward and backward)

Applications

Molecular biology (backward)
Genetic engineering (forward)
Distributed robotics (forward)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

A syntax for the trees

V : a set of nodes.

δ : V → N : degree map.

(v , {t1, . . . , tn})
edg(t, v) : number of edges connected to v in t

t is coherent ⇐⇒ ∀v ∈ n(t), δ(v) = edg(t, v)

qsdqsd

c

c

c

a

b

δ(a) = 3 δ(b) = 2 δ(c) = 1

(a, {(b, {c}), c, c})

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

An LTS for the specification

The specification : SPEC = (S , L,→)

Element of the state space : (N,
∑

i ti) with N ⊆ V and ti

coherent.

Labels : set of coherent trees

Transition relation : for all coherent tree t

(N + n(t) ,
∑

i ti)→t (N , t +
∑

i ti)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

An LTS for the specification

The specification : SPEC = (S , L,→)

Element of the state space : (N,
∑

i ti) with N ⊆ V and ti

coherent.

Labels : set of coherent trees

Transition relation : for all coherent tree t

(N + n(t) ,
∑

i ti)→t (N , t +
∑

i ti)

We are looking for an implementation in a process algebra:

Concurrency

Binary interactions

Mathematical tool for proving correctness.

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

Possible program

nodei
def
= τ.build

δ(i),∅
i? +

∑
j∈I

rij .build
δ(i),∅
ij

buildn+1,S
ij

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + killi .abortS

i

buildn+1,S
i?

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + τ.abortS

i

build0,S
iα

def
= wait

|S|,S
iα

waitn+1,S
ij

def
= wi .waitn,S

ij + killi .abortS
i

waitn+1,S
i?

def
= wi .waitn,S

i? + τ.abortS
i

wait0,S
ij

def
= w j . ↑S

ij +killi .abortS
i

wait0,S
i?

def
= oki . ↑S

i?

freeS∪{i}(end)
def
= kill i .freeS (end) ↑S

ij
def
= τ. ↑S

ij +killi .abortS
ij

free∅(end)
def
= end .0 ↑S

i?
def
= τ. ↑S

i?

abortS
i

def
= (end)(freeS (end) | end .nodei)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

Possible program

nodei
def
= τ.build

δ(i),∅
i? +

∑
j∈I

rij .build
δ(i),∅
ij

buildn+1,S
ij

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + killi .abortS

i

buildn+1,S
i?

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + τ.abortS

i

build0,S
iα

def
= wait

|S|,S
iα

waitn+1,S
ij

def
= wi .waitn,S

ij + killi .abortS
i

waitn+1,S
i?

def
= wi .waitn,S

i? + τ.abortS
i

wait0,S
ij

def
= w j . ↑S

ij +killi .abortS
i

wait0,S
i?

def
= oki . ↑S

i?

freeS∪{i}(end)
def
= kill i .freeS (end) ↑S

ij
def
= τ. ↑S

ij +killi .abortS
ij

free∅(end)
def
= end .0 ↑S

i?
def
= τ. ↑S

i?

abortS
i

def
= (end)(freeS (end) | end .nodei)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

Possible program

nodei
def
= τ.build

δ(i),∅
i? +

∑
j∈I

rij .build
δ(i),∅
ij

buildn+1,S
ij

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + killi .abortS

i

buildn+1,S
i?

def
=

∑
k∈I

r̄ik .build
n,S∪{k}
ij + τ.abortS

i

build0,S
iα

def
= wait

|S|,S
iα

waitn+1,S
ij

def
= wi .waitn,S

ij + killi .abortS
i

waitn+1,S
i?

def
= wi .waitn,S

i? + τ.abortS
i

wait0,S
ij

def
= w j . ↑S

ij +killi .abortS
i

wait0,S
i?

def
= oki . ↑S

i?

freeS∪{i}(end)
def
= kill i .freeS (end) ↑S

ij
def
= τ. ↑S

ij + killi .abortS
ij

free∅(end)
def
= end .0 ↑S

i?
def
= τ. ↑S

i?

abortS
i

def
= (end)(freeS (end) | end .ni)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

What is required ?

The code is very complicated:

– equivalence with the specification

– more difficult to understand, reuse, patch, . . .

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

The specification
A solution

What is required ?

The code is very complicated:

– equivalence with the specification

– more difficult to understand, reuse, patch, . . .

Our approach:

1 forward code in CCS

2 good properties w.r.t specification

3 lift into RCCS (nothing to do)

4 application of a theorem: RCCS term is equivalent to the
specification

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

CCS : syntax

Actions: α ::= a | ā Action on a channel
| τ Silent action

Processes: p ::= 0 End of process
|∑αi .pi Guarded Choice
| (p ‖ p) Fork
| (a)p Restriction
| D(x̃) Definition

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

CCS : semantics

∑
i αi .pi →αi pi

(act)
p →α p′

p ‖ q →α p′ ‖ q
(par)

p →ā p′ q →a q′

p ‖ q →τ p′ ‖ q′
(synch)

p →α p′ α 6= a, ā

(a)p →α (a)p′
(res)

p ≡ p′ →α q′ ≡ q

p →α q
(equiv)

D(x̃) ≡ p if (D(x̃) := p) ∈ ∆

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

Mathematical tools

K ⊆ A: observable actions (ex. K = A\ {τ})
K c := A\K .

A relation R is a simulation if p R q implies:

p

a∈K
��

R q

∗
w∈(K c)∗a(K c)∗

��
p′ R q′

p

a∈K c

��

R q

∗
w∈(K c)∗

��
p′ R q′

It is also a bisimulation if symmetric.

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

A solution . . .

nodei
def
= τ.(build

δ(i)
i | wait

δ(i)
i?)

+
∑
j∈V

rij .(build
δ(i)−1
i | wait

δ(i)−1
ij)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

A solution . . .

nodei
def
= τ.(build

δ(i)
i | wait

δ(i)
i?)

+
∑
j∈V

rij .(build
δ(i)−1
i | wait

δ(i)−1
ij)

buildn+1
i

def
=

∑
j∈V

r̄ij .buildn
i

build0
i

def
= 0

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

A solution . . .

nodei
def
= τ.(build

δ(i)
i | wait

δ(i)
i?)

+
∑
j∈V

rij .(build
δ(i)−1
i | wait

δ(i)−1
ij)

buildn+1
i

def
=

∑
j∈V

r̄ij .buildn
i

build0
i

def
= 0

waitn+1
iα

def
= wi .waitn

iα

wait0
ij

def
= w̄j . ↑i

j

wait0
i?

def
= oki . ↑i

?

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

. . . with deadlocks
If δ(a) = 2 and δ(b) = δ(c) = 1

nodea | nodeb | nodec → build2
a | wait2

a? | nodeb | nodec

→? wait2
a? | wait0

ba | wait0
ca

≡ wa.wa.oka. ↑a
? | w̄a. ↑b

a | w̄a. ↑c
a

→? oka. ↑a
? | ↑b

a | ↑c
a

→oka ↑a
? | ↑b

a | ↑c
a

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

. . . with deadlocks
If δ(a) = 2 and δ(b) = δ(c) = 1

nodea | nodeb | nodec → build2
a | wait2

a? | nodeb | nodec

→? wait2
a? | wait0

ba | wait0
ca

≡ wa.wa.oka. ↑a
? | w̄a. ↑b

a | w̄a. ↑c
a

→? oka. ↑a
? | ↑b

a | ↑c
a

→oka ↑a
? | ↑b

a | ↑c
a

If δ(a) = δ(b) = 1 and δ(c) = 3

nodea | nodeb | nodec → build1
a | wait1

a? | nodeb | nodec

→ wait1
a? | nodeb | build2

c | wait2
ca

→ wait1
a? | wait0

bc | build1
c | wait2

ca

≡ wait1
a? | wc . ↑b

c | build1
c | wc .wc .wa. ↑c

a

→ wait1
a? | ↑b

c | build1
c | wc .wa. ↑c

a

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

CCS
Bisimulation
Implementation
Properties

Not enough ?

The implementation is not bisimilar to the specification
But has some good properties:

What is assembled is allowed

It may find a way to simulate the specification

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

RCCS : syntax

p, q ::= (p ‖ q) |∑i αi .pi | (a)p | D(x̃) | 0 CCS

r , s ::= m . p Threads
| (r ‖ s) Parallel
| (a)r Restriction

m ::= 〈θ, a, p〉 ·m Synch
| 〈|θ|〉 ·m Commit
| 〈1〉 ·m | 〈2〉 ·m Fork address
| 〈〉 Empty

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

RCCS : semantics

Transition: t = 〈r , θ, ζ, r ′〉
Labels: θ ∈ I ζ := α | α−

If θ 6∈ I(m):

m . α.p + q
θ:α−→ 〈θ, α, q〉 ·m . p (act)

〈θ, α, q〉 ·m . p
θ:α−−→ m . α.p + q (act−)

m . α.p + q
θ:α−→ 〈|θ|〉 ·m . p (act)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

RCCS : semantics

Synchronisation rules are:

(com)
r

θ:ā−→ r ′ s
θ:a−→ s ′

r ‖ s
θ:τ−→ r ′ ‖ s ′

r
θ:ā−−→ r ′ s

θ:a−−→ s ′

r ‖ s
θ:τ−−→ r ′ ‖ s ′

(com−)

r
θ:ā−→ r ′ s

θ:a−→ s ′

r ‖ s
θ:τ−→ r ′ ‖ s ′

(com)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

RCCS : semantics

m . (x)p ≡ (x)(m . p) if x 6∈ m
m . (p ‖ q) ≡ (〈1〉 ·m . p) ‖ (〈2〉 ·m . q)

Context rules are:

r
θ:ζ−→ r ′ θ 6∈ I(s)

r ‖ s
θ:ζ−→ r ′ ‖ s

(par)
r

θ:ζ−→ r ′ ζ 6= x , x̄ , x−, x̄−

(x)r
θ:ζ−→ (x)r ′

(res)

r ≡ r ′
θ:ζ−→ s ′ ≡ s

r
θ:ζ−→ s

(equiv)

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

Causal traces

A trace σ is said to be causal if:

1 there is only one irreversible action t

2 for all σ′ ∼ σ, σ′ ends with t.

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

Causal traces

A trace σ is said to be causal if:

1 there is only one irreversible action t

2 for all σ′ ∼ σ, σ′ ends with t.

a.b.0 | c.0 →a b.0 | c.0 →c b.0 →b 0

a.b.0 | c.0 →a b.0 | c.0 →b c.0

a.b.0 | ā.0 →τ b.0 →b 0

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

Main theorem

Some definitions:

K a set of underlined action in CCS

p1 →c
k p2 if there is a causal trace from p1 to p2 ending with

k ∈ K

CTS(p) = (P, p,K ,→c) : the causal transition system
induced by p

Theorem

Let p be a CCS process and Φ the relation
{(k, θ : k) | k ∈ K , θ ∈ I}, then CTS(p) ≈Φ LTS(〈〉 . p).

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

On the implementation

What is not part of the theorem:

– mapping the trees into the CCS code:

[[(a, {t1, . . . , tn})]]α = ↑a
α | [[t1]]a | . . . | [[tn]]a

– mapping the states of the LTS into the CCS code:

[[N,
∑

i ti]] =
∏

i∈N nodei |
∏

j [[tj]]?

Proposition

Let Φ be the relation
{

(t, oki) | i ∈ V
}

.
The relation {(N,

∑
i ti), [[N,

∑
i ti]]} is a Φ-bisimulation between

SPEC and CTS([[V]]).

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

RCCS
Main result
Correctness results

Proving correctness in RCCS

Bisimulation is 1. and 2. weak correctness is 1. and 2’.

1. Simulation: All transactions of the spec. can be performed in
the implementation.

2. Correctness: All evolutions of the implementation lead to a
state which is also in the spec.

2’. No bad state: All evolutions of the implementation that
(causally) lead to a state must be in accordance with the
specification.

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

Generic approach
Improvements

Declarative Concurrent Programming

Weakly correct p

(1)wwnnnnnnnnn
Hack

(1′))))i)i)i)i)i)i

CTS(p) `K (p)
��

≈

p \ deadlocks

SPEC

≈PPPPP
(2)

PPPPP
≈5u5u5u

(2′) 5u5u5u

(1) Automatic: Ocaml tool (Causal)
(1’) By hand. Difficulty depends on system’s topology.
(2) Automatic: in most cases CTS(p) ≡ SPEC.
(2’) By hand beyond a certain size

Fabien Tarissan Self assembling trees with RCCS

Introduction
Modelling distributed systems

Reversible CCS
Conclusion

Generic approach
Improvements

Further works

Some drawbacks:

General result may imply loss of efficiency when backtracking

We strongly rely on the mapping [[·]]

Improvements:

Having more refined labels (CCS with values)

Dealing with graphs (Reversible π-calculus)

Handling a stronger property on the correctness (stochastic
behaviour)

Fabien Tarissan Self assembling trees with RCCS

	Introduction
	The specification
	A solution

	Modelling distributed systems
	CCS
	Bisimulation
	Implementation
	Properties

	Reversible CCS
	RCCS
	Main result
	Correctness results

	Conclusion
	Generic approach
	Improvements

