Self assembling trees with RCCS

Fabien Tarissan

Joint work with Vincent Danos & Jean Krivine

Equipe PPS, Université Paris 7 & CNRS

INRIA-Rocquencourt, Université Paris 6

SOS - August 26, 2006

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

The problem

@ Question : How a collective behaviour may emerge from
elementary interactions (forward and backward)
@ Applications

o Molecular biology (backward)
s Genetic engineering (forward)
o Distributed robotics (forward)

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

The problem

@ Question : How a collective behaviour may emerge from
elementary interactions (forward and backward)
@ Applications

o Molecular biology (backward)
s Genetic engineering (forward)
o Distributed robotics (forward)

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

A syntax for the trees

@ V : a set of nodes.
@ 0:V — N : degree map.

(V’ {tl7 SRR tn})
@ edg(t,v) : number of edges connected to v in t
@ tis coherent <= Vv € n(t),d(v) = edg(t, v)

c

. o 5(a)=3 d(b)=2 &(c)=1
(a.{(b,{c}),c,c})

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

An LTS for the specification

The specification : SPEC = (S, L, —)

@ Element of the state space : (N,) ;t;) with N C V and t;
coherent.

@ Labels : set of coherent trees

@ Transition relation : for all coherent tree t

(N+n(t), S;t) = (N, t+3t)

Fabien Tarissan Self assembling trees with RCCS

Introduction

The specification
A solution

An LTS for the specification

The specification : SPEC = (S, L, —)

@ Element of the state space : (N,) ;t;) with N C V and t;
coherent.

@ Labels : set of coherent trees

@ Transition relation : for all coherent tree t

(N+n(t), S;t) = (N, t+3t)

We are looking for an implementation in a process algebra:
o Concurrency

@ Binary interactions

@ Mathematical tool for proving correctness.

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

Possible program

def 8(i),0 8(i),0
NODE; = T.BUILD;, " + _Elr,-j.BUILD,.j
JE
def _ :
BUILDZ-+1’5 = 3 rik.BUILDZ-’SU{k} + kill;. ABORT?
kel
n+1,S def - n,SU{k} 5
BUILD;, = kzlr,-k.BUILD,j + T.ABORT;
S
def
BUILDY? Ll warrl?h?
def .
WAITZ-+1’S = W,-.WAITZ-’S + kill;. ABORT?
def
warr/ e = w.WAIT},> + T.ABORT?
def :
WAIT)® = Wj. 1} +kill. ABORT?
0,S def
WAIT,; = ok 13,
; def def ,
FREE*YU} (end) = kill; FREE® (end) 7 = 717 +kill.ABORT;
def —— def
FREE? (end) = end.0 A
def
ABORT? = (end)(FREE®(end) | end .NODE;)

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

Possible program

def ' 3(i),
NODE; e reun’ " 4 Sor, Bup
1 i* y i
jel
def _ k :
BUILDZ-+1’5 = Zrik.BUILDZ-’SU{ by kill; ABORT?
kel
n+1,S def - n,SU{k} S
BUILD;, = kzlr,-k.BUILD,j + T.ABORT;
S
def s,s
BUILDY? £ warrl2h
def .
WAITZ-+1’S = W,-.WAITZ-’S + kill;. ABORT?
def
WAITT = W.WAIT]® + 7.ABORT?
def __ .
WAITg-’S = W T,-JS- +kill;. ABORT?
0.5 def S
WAIT; = ok;.
Ix Ix
; def def :
FREESVUY (end) = kill;.FREE® (end) 7 = 717 +kill.ABORT;]
0 def s def s
FREE" (end) = end0 o= T.1%
def
ABORT? = (end)(FREE®(end) | end .NODE;)

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

Possible program

def 8(7), 3(i),
NODE; e eump?? 4 Er,-j.BUILDij(I)’@
jel
def _ SU{k :
BUILD,’.J’.“‘S = Zr,-k.BUILDZ- { }—&— k:/l,-.ABORT;s
kel
def _ SU{k
BuILD/ H® = S Fsuwn*Y M 4 raBortf
kel
0,5 def ISI,S
BUILD, = WAIT}
WAITZ.H"5 = W,-,VVAITZ-'S + kill;. ABORT?
def
wArT® = W WAIT™® + 7.ABORT?
0,5 def — 45 1 S
WAIT; = W T,-J- +kill;. ABORT;
0,5 def)
WAIT;, = ok;. 17,
; def def :
FREE>YU} (end) = kill;. FREE® (end) 17 = 717 + kill.ABORT}
def —— def
FREE” (end = end.0 s
1% 1%
def
ABORT? = (end)(FrREE®(end) | end.N;)

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

What is required ?

The code is very complicated:
— equivalence with the specification

— more difficult to understand, reuse, patch, ...

Fabien Tarissan Self assembling trees with RCCS

Introduction
The specification
A solution

What is required ?

The code is very complicated:
— equivalence with the specification

— more difficult to understand, reuse, patch, ...

Our approach:
© forward code in CCS
@ good properties w.r.t specification
Q lift into RCCS (nothing to do)

@ application of a theorem: RCCS term is equivalent to the
specification

Fabien Tarissan Self assembling trees with RCCS

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

CCS : syntax

Actions: a = ala Action on a channel
| Silent action
Processes: p == 0 End of process
| > aj.pi Guarded Choice
[(p |l P) Fork
| (a)p Restriction
| D(%) Definition

Fabien Tarissan Self assembling trees with RCCS

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

CCS : semantics

p_>ap/ (
plla—ar | q

(act) par)

Zi ai-Pi _’a,- Pi

p—:p q—aq (synch)
pla—-plqd =~

D(X) = p if (D(X) :=p) € A

Fabien Tarissan Self assembling trees with RCCS

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

Mathematical tools

K C A: observable actions (ex. K = A\ {7})
K := A\K.

A relation R is a simulation if p R g implies:

pP—r—q p—r—q
aeKl we(Ke)*a(Ke)* aeKCl we(Ke)

Vs Y%

p/ R q/ p/ R q’

It is also a bisimulation if symmetric.

Fabien Tarissan Self assembling trees with RCCS

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

A solution . ..

NODE; *f T.(BUILD?(i) | WAIT;S*("))
+ > r,-j.(BUILDj.S(’)*1 | WAITZ-(I))

Jjev

Fabien Tarissan Self assembling trees with RCCS

CCs
Bisimulation

Implementation
Properties

Modelling distributed systems

A solution . ..

def 8(i 8(i
NODE; ¢ (Buwp!? | warrl?)
5(i)-1
+ > r,-j.(BUILD,.() ii
jev

def -

puiLp/t! = 3 F.BUILD?
jev

def

uiLD? = 0

Fabien Tarissan Self assembling trees with RCCS

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

A solution . ..

def 8(i 8(i
NODE; (U’ | warr?®)
y 6()—-1 8(i)
+ > rij(BUILD; | WATT;)
JeV
def _
puiLp/t! = 3 F.BUILD?
jev
def
uiLD? = 0
def
wAIT E wiwaArT?,
0 def ~ 4i
WAIT) = w1
0 def '
WAIT], = oki. T}

Fabien Tarissan Self assembling trees with RCCS

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

.with deadlocks
If (a) =2 and 6(b) =d(c) =1

NODE, | NODEj | NODE, — BUILD? | WAIT2, | NODEp, | NODE,

—* WAIT2, | WAITY, | WAITY,
= Wa.W.0ka. T2 | Wa. 12 | W 15
=% oka 1715118

—oks 121151715

Fabien Tarissan Self assembling trees with RCCS

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

... with deadlocks
If (a) =2 and 6(b) =d(c) =1

NODE, | NODEj | NODE, — BUILD? | WAIT2, | NODEp, | NODE,

* 2 0 0
— WAITS, | WAIT, | WAIT,

= Wa-Wa.0Ka. 13 | Wa. 15 | Wa 15
—* oka 1215115
—ok, 12112115
If 6(a) = d(b) =1 and §(c) =3
NODE, | NODEp | NODE. — BUILD! | wAIT!, | NODE}, | NODE,
— WAITL, | NODE, | BUILD? | WAITZ,
— WAITL, | wAIT)_ | BUILD! | wAITZ,
WAITL, | We. 12| BUILDY | we.wews. 1§
WAITL, | 12 | BUILDL | we.W;. 1€

Fabien Tarissan Self assembling trees with RCCS

Lo

CCs

Modelling distributed systems Bisimulation
Implementation
Properties

Not enough 7

The implementation is not bisimilar to the specification
But has some good properties:

@ What is assembled is allowed

@ It may find a way to simulate the specification

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

Reversible CCS ¥ .
Correctness results

RCCS : syntax

p.q == (pllq)l>;aipi|(a)p|D(X)[0 CCS
r,s = mbp Threads
| (rs) Parallel
| (a)r Restriction
m = (0,ap) M Synch
| (6) - m Commit
| @w-m| @-m Fork address
| 0 Empty

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

Reversible CCS ¥ .
Correctness results

RCCS : semantics

Transition: t = (r,0,¢,r')
Labels: el (=ala”

If 0 ¢ Z(m):

m>a.p+q bio, 0,a,q) - m>p (act)
(0,0,q) - m>p brer, mea.p+q (act)

[Re%
m>ap+q — (6)-mb>p (act)

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

Reversible CCS ¥ .
Correctness results

RCCS : semantics

Synchronisation rules are:

0:a 0:a 6:a— 0:a”
r—=r s—Ss r—r s=——s N
(com) 0 o (com™)
rifs =rs rifs=—r1|s
0:a , 0:a

0:1 (co_m)
rlls—r|s

Fabien Tarissan Self assembling trees with RCCS

RCCS

. Main result
Reversible CCS ¥ .
Correctness results

RCCS : semantics

(x)(m>p)ifxgm
(1) -m>p) [((2) - m>q)

mo (x)p
moe(p | q)

Context rules are:

r 0 &1(s) r 2 C#Xx,%X,x, X~
(par) (res)
0:¢ 0:¢ ,
rils—=r|s (x)r = (x)r
r=r e, s’ =)
e (equiv)
r—s

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

Reversible CCS y .
Correctness results

Causal traces

A trace o is said to be causal if:
@ there is only one irreversible action t

Q for all ¢/ ~ o, ¢’ ends with t.

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

Reversible CCS y .
Correctness results

Causal traces

A trace o is said to be causal if:
@ there is only one irreversible action t

@ for all ¢/ ~ 7, o' ends with t.
a.b0|c0 —,; b0|cO0 —c b0 —5 O
a.b0|c0 —,; b0]|cO —p cO

a.b.0|3.0 —, b0 —p O

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

R ibl
eversible CCS Correctness results

Main theorem

Some definitions:
@ K a set of underlined action in CCS

@ p; —{ po if there is a causal trace from p; to p> ending with

keK
e CTS(p) = (P, p, K,—°) : the causal transition system
induced by p

Let p be a CCS process and ® the relation
{(k,0: k)| k€ K,0 € I}, then CTS(p) ~o LTS(() > p).

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

R ibl
eversible CCS Correctness results

On the implementation

What is not part of the theorem:
— mapping the trees into the CCS code:

[(a,{tr,. - taD)la = 15[[0la |- | [tals

— mapping the states of the LTS into the CCS code:

[V, 32 til = IlienNoDE: | I1;[t]-

Proposition

Let ® be the relation {(t,ok;) | i€ V}.
The relation {(N,>"; t;), [N,>_; ti]} is a ®-bisimulation between
SPEC and CTS([V]).

Fabien Tarissan Self assembling trees with RCCS

RCCS
Main result

R ibl
eversible CCS Correctness results

Proving correctness in RCCS

Bisimulation is 1. and 2. weak correctness is 1. and 2'.

1. Simulation: All transactions of the spec. can be performed in
the implementation.

2. Correctness: All evolutions of the implementation lead to a
state which is also in the spec.

2'. No bad state: All evolutions of the implementation that

(causally) lead to a state must be in accordance with the
specification.

Fabien Tarissan Self assembling trees with RCCS

Generic approach
Improvements
Conclusion

Declarative Concurrent Programming

Weakly correct p

0 l -

CTS(p) lk(p) p \ deadlocks

\g) z (2:~2ﬁ,\/”

SPEC |

1) Automatic: Ocaml tool (Causal)

1') By hand. Difficulty depends on system's topology.
2) Automatic: in most cases CTS(p) = SPEC.

2') By hand beyond a certain size

Fabien Tarissan Self assembling trees with RCCS

Generic approach
Improvements
Conclusion

Further works

Some drawbacks:
@ General result may imply loss of efficiency when backtracking

@ We strongly rely on the mapping []

Improvements:
@ Having more refined labels (CCS with values)
@ Dealing with graphs (Reversible 7-calculus)

@ Handling a stronger property on the correctness (stochastic
behaviour)

Fabien Tarissan Self assembling trees with RCCS

	Introduction
	The specification
	A solution

	Modelling distributed systems
	CCS
	Bisimulation
	Implementation
	Properties

	Reversible CCS
	RCCS
	Main result
	Correctness results

	Conclusion
	Generic approach
	Improvements

